Mostrando entradas con la etiqueta tácticas ASW. Mostrar todas las entradas
Mostrando entradas con la etiqueta tácticas ASW. Mostrar todas las entradas

miércoles, 14 de febrero de 2024

ASW: ¿Cómo detectan los aviones a los submarinos?

 

¿Cómo detectan los aviones los submarinos?

Submarino clase Los Ángeles a profundidad de periscopio

Muy por encima de la superficie del océano, la búsqueda aérea de un enemigo invisible debajo de las olas es extremadamente compleja y difícil. Encontrar submarinos enemigos en una situación del mundo real es como "encontrar una aguja en un pajar". Las misiones antisubmarinas pueden implicar mucho descubrir dónde no está un enemigo y luego acercarse al objetivo, como jugar al clásico juego de mesa Battleship, excepto que, en este caso, tu oponente puede ver ambos lados del tablero.

Una breve historia del uso de aeronaves en ASW

En respuesta a la gran amenaza que representaron los submarinos enemigos en la Primera Guerra Mundial, en la que se destruyeron más de 5.000 barcos y perdieron la vida 15.000 marineros, la Junta Británica de Invenciones e Investigación (BIR) ideó múltiples contraestrategias.

Trabajando "para iniciar, investigar y asesorar en general sobre propuestas con respecto a la aplicación de la ciencia y la ingeniería a la guerra naval", el BIR incluía a físicos de primer nivel como William Bragg y Ernest Rutherford. Al cambiar su enfoque durante la guerra de la radiactividad y la estructura atómica a la acústica submarina, Rutherford hizo contribuciones significativas para mejorar la detección submarina del sonido de los submarinos.

Por otro lado, durante la Segunda Guerra Mundial algunos aviones terrestres se convirtieron en los primeros aviones de patrulla marítima (MPA) y han iniciado patrullas aéreas de guerra antisubmarina (ASW). Desde entonces, la mayoría de las AMP se han derivado de aviones civiles, ya que pueden volar largas distancias, permanecer en el aire durante mucho tiempo y tener mucho espacio interior para la tripulación y el equipo de la misión.

Dos primeros ejemplos de AMP de aviones de pasajeros reconvertidos fueron el Nimrod de la RAF (originalmente el Cometa de Havilland), que fue retirado en 2010, y el P-3 aún activo de la Marina de los EE. UU. (originalmente el Lockheed Electra). El MPA desarrollado más recientemente, el Boeing P-8A Poseidon, está basado en el Boeing 737.

British Aerospace Nimrod MR.2

Todos estos aviones están diseñados para aprovechar el hecho de que es posible encontrar submarinos mediante la física. Durante una misión ASW, la tripulación de un avión utiliza una serie de sensores de alta tecnología para encontrar cualquier rastro dejado por un submarino.

Los sensores acústicos buscan ondas de presión sonora bajo el agua, mientras que los sensores electromagnéticos identifican varias partes del espectro electromagnético. En cuanto a los sensores activos, emiten un pulso de energía con forma, o un ping, y recogen cualquier señal de retorno que se haya reflejado en parte del submarino. Mientras tanto, los sensores pasivos “escuchan” y recogen cualquier ruido del entorno, que con suerte incluye una emisión del objetivo. Veamos los detalles de estos sensores que utilizan los aviones para detectar submarinos.

Sonoboyas

Las sonoboyas son botes cilíndricos que se lanzan en paracaídas desde un avión. Contienen un hidrófono (micrófono especial) sintonizado con el agua y un transceptor de radio para enviar la información al avión. Cuando golpea el agua, la sonoboya despliega inmediatamente el hidrófono a una profundidad preestablecida y erige una pequeña antena flotante para que una simple radio a bordo transmita la señal a la aeronave. El alcance de las sonoboyas y el lugar donde deben colocarse depende del objetivo y del entorno local y es una de las áreas más clasificadas en las operaciones ASW.

Un avión P-8 Poseidon desplegando sonoboyas

Las sonoboyas vienen en dos variedades básicas: activas y pasivas. La sonoboya pasiva es un hidrófono bastante sencillo y económico; su única función es recoger toda la energía acústica del agua y convertirla en una señal de radio, que se transmite a un procesador de computadora en el avión. La sonoboya activa (sonar), por otro lado, funciona como un radar submarino, pero en lugar de ondas de radio, transmite ondas sonoras de alta frecuencia (los pings) que la tripulación puede controlar de forma remota.

Los vehículos aéreos no tripulados se utilizarán antes en ASW

Los submarinos están muy tranquilos hoy. Muchos rangos de detección de sonoboyas pasivas son extremadamente cortos (<100 m). Algunos submarinos están recubiertos con material que absorbe el sonido, por lo que es muy difícil detectarlos con sonoboyas activas contra este tipo de submarinos.

Detector de anomalías magnéticas (MAD)

Un instrumento MAD detecta variaciones mínimas en el campo magnético de la Tierra. Un submarino sumergido representa una masa de material ferromagnético que crea una perturbación detectable en el campo magnético de la Tierra. El equipo militar MAD es un descendiente de los instrumentos de reconocimiento geomagnético o aeromagnético utilizados para buscar minerales detectando su alteración del campo terrestre normal. Para reducir la interferencia de equipos eléctricos o metales en el fuselaje de la aeronave, el sensor MAD se coloca al final de una pluma o en un dispositivo aerodinámico remolcado. Aun así, el submarino debe estar muy cerca de la posición de la aeronave y cerca de la superficie del mar para detectar la anomalía, porque los campos magnéticos disminuyen con la inversa del cubo de la distancia. El tamaño del submarino, la composición y orientación del casco, así como la profundidad del agua y la complejidad del campo magnético natural determinan el alcance de detección.


Pluma trasera MAD en P-3C (Imagen: Wikipedia)

Requiere que los aviones vuelen muy bajo sobre la superficie (aumentando la fatiga del fuselaje y el consumo de combustible). Descender desde una altitud de crucero también lleva tiempo. El equipo es grande y pesado. Por estas razones, un brazo MAD no está incluido en el actual USN P-8, el avión de patrulla marítima de largo alcance más nuevo de la marina.

Contramedidas: el submarino puede sumergirse más profundamente para reducir sus posibilidades de ser detectado. Las profundidades operativas típicas del SSN son 400 m. Las armadas están tratando de reducir la firma magnética haciendo pasar corrientes a través del casco y utilizando materiales de casco no magnéticos. Los rusos han construido submarinos con titanio no magnético, y la nueva clase sueca A26 se construirá parcialmente con vinilo reforzado con fibra de carbono que no es magnético (y 5 veces más resistente que el acero).

Radar

El radar puede detectar un snorkel o un periscopio submarino y la estela que crea. Históricamente, eran más útiles para detectar submarinos en la superficie, lo que los obligaba a pasar más tiempo bajo el agua, donde eran menos efectivos (más lento, resistencia limitada, alcance limitado del sensor). Durante gran parte de la Segunda Guerra Mundial, los submarinos alemanes fueron esencialmente torpederos sumergibles. La mayoría de sus ataques en realidad se realizaron en la superficie.

Hoy en día, nuestros radares mejorados pueden detectar periscopios submarinos (y sus estelas) a distancias significativas, lo que obliga a los submarinos a echar sólo vislumbres muy breves. En realidad, el periscopio es bastante útil para identificar objetivos y obtener alcances y rumbos mucho más rápido que acechar solo con el sonar.

Sistema de radar Poseidón P-8

Las tecnologías de radar se están desarrollando más rápido que los sonares. La Marina de los EE. UU. está probando un  nuevo módulo de radar  que puede detectar submarinos.

La Marina de los EE. UU., rompiendo con la detección tradicional de submarinos, está trabajando para reemplazar el sonar y la detección magnética por radar. El sensor aéreo avanzado (AAS) AN/APS-154 detectará las estelas invisibles dejadas por los submarinos bajo el agua, pistas reveladoras de que algo grande acecha bajo las olas. El AAS será transportado por el avión P-8 Poseidon, que luego podrá atacar a los submarinos con torpedos antisubmarinos lanzados desde el aire.

Según  Forbes , la cápsula montada hacia abajo cuenta con un radar avanzado de escaneo electrónico (AESA). A diferencia de los radares parabólicos tradicionales que utilizan un módulo de radar grande y potente, los radares AESA utilizan muchos módulos más pequeños. Estos módulos pueden operar colectivamente en múltiples frecuencias, lo que significa que pueden superar interferencias o ampliar o enfocar su campo de detección, especialmente contra objetos pequeños e invisibles para el ojo humano.


Un dron volador detecta objetivos submarinos utilizando el sonar PASS: pulsos láser producen ondas sonoras bajo el agua, que son captadas por los transductores del dron (Imagen: Universidad de Stanford)

 

Intercepción de señal, ESM

Es posible que detecte un submarino comunicándose por radio. También puedes detectar un submarino si utiliza su radar con sistemas ESM. Una transmisión de radio, aunque sólo tarda una fracción de segundo en enviarse, puede captarse y indicar la orientación del submarino.

Visual

Si estás directamente encima de un submarino a poca profundidad, podrás verlo. No hace falta decir que esto es  extremadamente  raro, pero es una de las razones por las que operar en aguas litorales poco profundas es peligroso. Si tienes suerte, es posible que veas una estela de periscopio. También es poco probable que veas una estela en la superficie. A la profundidad del periscopio, los submarinos se mueven muy lentamente. Y a profundidades operativas, las estelas de la superficie son extremadamente diminutas, probablemente indetectables incluso mediante radar y procesamiento avanzado, aunque se han hecho intentos.


El submarino australiano clase Collins, HMAS Rankin (SSK 78) navega mar adentro a una profundidad de periscopio (Foto de la Marina de EE. UU.)

EO/RI

Un submarino diésel-eléctrico sin AIP (Air Independent Propulsion) tiene que levantar el snorkel para hacer funcionar los diésel y cargar las baterías. Los sistemas EO/IR pueden detectar gases de escape o periscopios/estelas.

Otros métodos no acústicos

  • Químico (por ejemplo, sensor de hidrocarburos): para detectar submarinos que practican snorkel recargando sus baterías.
  • LIDAR: potencialmente más rápido que MAD. Profundidad y banda de búsqueda limitadas. Menos eficaz en aguas costeras turbias. No se utiliza operativamente.
  • Radar para detectar las diminutas térmicas del agua caliente calentada por reactores. (Afirmado por los rusos, no demostrado por Estados Unidos).

sábado, 9 de diciembre de 2023

Guerra Fría: La guerra submarina (1/2)

Guerra Submarina de la Guerra Fría

Parte I  || Parte II
Weapons and Warfare




Los submarinos desempeñaron un papel importante en la Guerra Fría (1947-1991), particularmente porque el desarrollo de armas nucleares y plataformas para entregarlas introdujo el submarino de misiles balísticos en las flotas de los Estados Unidos, la Unión Soviética y luego a otras potencias. Con el concepto de un submarino saliendo a la superficie lo suficientemente cerca como para lanzar misiles sin suficiente advertencia para evacuar a los líderes civiles de un país, o para llevar a cabo un ataque preventivo, la guerra submarina también involucraba necesariamente naves de ataque rápido para cazar y evitar que los barcos balísticos se abalanzaran sobre ellos. demasiado cerca. Misiones para seguir flotas de superficie, infiltrarse en puertos y puertos enemigos, realizar espionaje y recopilación de inteligencia, y el desarrollo de nuevas tecnologías para interceptar comunicaciones, escuchar barcos enemigos con mayor capacidad para detectarlos y rastrearlos. y construir submarinos más profundos, rápidos y mortíferos definió la Guerra Fría bajo las olas. Entre las misiones se encontraban las primeras penetraciones del Mar Negro, luego un Mare Clausum soviético, a principios de 1947, y las aguas frente a Vladivostok en 1952 durante la Guerra de Corea por barcos diesel en tiempos de guerra, vigilancia submarina estadounidense de pruebas atómicas soviéticas frente a Novaya Zemlya, despliegue de buzos para aprovechar los cables del lecho marino soviético, observar y fotografiar submarinos soviéticos y mapear la costa ártica de la Unión Soviética. Se produjo un juego mortal del gato y el ratón de la Guerra Fría, en el que los soviéticos perdieron cuatro de sus barcos, K-129, K-8, K-219 y Komsomolets, y EE. UU. perdió dos, el USS Thresher y el USS Scorpion como varias misiones. empujó algunos barcos más allá de su capacidad y ocurrieron trágicos accidentes. El 15 de mayo de 1968, pérdida de Scorpion, Todavía clasificado por el gobierno de los EE. UU. como "causa desconocida", se cree ampliamente que es "el primer hundimiento premeditado de un submarino estadounidense desde la Segunda Guerra Mundial", un acto de represalia de la Unión Soviética en la creencia de que un submarino estadounidense había chocado con y hundió el barco Golf II K-129 en el Pacífico el 8 de marzo de 1968. Incluso sin ningún combate verificado, la Guerra Fría tuvo un precio humano. Hubo otras bajas causadas por submarinos y pérdidas de submarinos durante el período de la Guerra Fría, tres submarinos británicos, Truculent, Affray y Sidon y el submarino israelí Dakar se encuentran entre las pérdidas más famosas. Truculent se hundió en 1950 como resultado de una colisión con un petrolero sueco en el estuario del Támesis, mientras que Sidon se perdió en 1955 debido a la explosión de un torpedo de prueba a bordo. Tanto Affray como Dakar se hundieron con todas las manos y no se recuperaron durante algún tiempo. Affray se perdió durante una misión de guerra simulada en 1951 y no se encontró durante dos meses, mientras que Dakar se hundió en 1968 debido a lo que ahora se cree que es un casco roto, pero estuvo desaparecido durante más de 30 años. Incluso después de la Guerra Fría, la Armada rusa perdió el submarino nuclear Kursk en un trágico accidente de entrenamiento que cobró la vida de toda su tripulación. La tragedia de Kursk se desarrolló durante las maniobras navales en el Mar de Barents el 12 de agosto de 2000. Durante los preparativos para disparar un torpedo, una explosión en la proa fue seguida por una segunda explosión más grande. Se cree que la primera explosión fue causada por un torpedo defectuoso alimentado con peróxido de hidrógeno seguido de una detonación secundaria de torpedos adicionales que demolieron la proa y hundieron el submarino. Llegando a descansar en 354 pies de agua, El Kursk hundido se convirtió en el centro de un drama prolongado cuando las autoridades rusas se negaron a aceptar ayuda internacional para rescatar a los tripulantes sobrevivientes de los 118 hombres a bordo. Más tarde se determinó que 23 hombres habían sobrevivido en un compartimento de popa pero se perdieron trágicamente.

Después de que los salvadores levantaran Kursk, en el compartimento de popa número nueve, se encontró el cuerpo del capitán-teniente Dmitri Kolesnikov, comandante del séptimo compartimento, con notas que había escrito después del desastre y mientras él y los demás enfrentaban la muerte. Las últimas palabras de Kolesnikov fueron poderosas, conmovedoras y valientes:

Está oscuro aquí para escribir, pero lo intentaré al tacto. Parece que no hay posibilidades, 10-20 por ciento. Esperemos que al menos alguien lea esto. Aquí está la lista de personal de las otras secciones, que ahora están en el 9 e intentarán salir. Saludos a todos, no hay que desesperarse.

La última nota de Kolsenikov también incluía un mensaje para su esposa; “Olichka, te amo. No sufras demasiado. Mis saludos para GV [su suegra] y saludos para la mía”.

El submarino también cobró un peaje en otros barcos durante la Guerra Fría y después. Durante la Guerra Indo-Paquistaní en 1971, el submarino paquistaní Hangor de diseño francés bajo el mando de Ahmed Tasnim hundió la fragata india Khakri el 22 de noviembre de 1971, la primera muerte de un submarino desde la Segunda Guerra Mundial, y la antigua Armada india de la clase Tench. El submarino Ghazi se hundió durante la guerra en circunstancias que siguen siendo controvertidas. El submarino británico HMS Conqueror, bajo el mando del Comandante Chris Wreford-Brown, hundió al crucero argentino General Belgrano durante la Guerra de las Malvinas el 2 de mayo de 1982, el primer y actualmente único ataque de un submarino nuclear durante la guerra. El ataque submarino probable más reciente se produjo el 26 de marzo de 2010, cuando la corbeta surcoreana Cheonan explotó y se hundió, matando a 46 de sus tripulantes. Después de levantar la nave hundida, Funcionarios de Corea del Sur declararon que un submarino norcoreano había hundido al Cheonan y mostraron los restos de un torpedo guiado recuperado del lugar del naufragio, publicando un informe de un panel de expertos extranjeros. Corea del Norte negó airadamente cualquier complicidad en el hundimiento y el asunto sigue siendo controvertido.

Al final de la Guerra Fría en 1991, los submarinos merodeaban los océanos del mundo en profundidad, esperando en silencio órdenes codificadas para liberar suficiente poder de fuego atómico para eliminar toda la vida de la superficie del planeta. Si bien han surgido varias historias sobre los barcos nucleares de la Guerra Fría, los hombres que los comandaban y tripulaban, y las diversas misiones que emprendieron, muchas más historias y detalles permanecen en secreto y envueltos en el misterio, y solo la apertura de archivos de alto secreto. permitirá una contabilidad final de este período de desarrollo y operaciones de submarinos. El submarinista de la Guerra Fría y autor W. Craig Reed ve este período como uno en el que los submarinos estadounidenses prevalecieron debido a su liderazgo, entrenamiento superior y tecnología, a pesar de que la fuerza de submarinos de los EE. UU. fue "superada en gran medida por los soviéticos". con solo 123 submarinos enfrentados a casi tres veces ese número”. Cuando terminó la Guerra Fría, la tecnología soviética se había puesto al día y, como ha señalado Reed, si la Guerra Fría hubiera continuado, con el tiempo podría haber tenido una conclusión diferente.

En las primeras décadas del siglo XXI, otras potencias han adquirido submarinos nucleares, otras naciones conservan flotas diesel-eléctricas, incluidas algunas potencias nucleares, y una carrera armamentista submarina continúa silenciosamente en todo el mundo frente a la tensión regional e internacional en curso.



El submarino nuclear

La Marina de los EE. UU. había diseñado un nuevo submarino, la clase Tang, para reemplazar el bote de la flota, pero las restricciones presupuestarias limitaron la producción incluso cuando los soviéticos se apresuraron a construir su propia flota de modernos submarinos diesel-eléctricos rápidos. Los experimentos con el sistema de propulsión Walter determinaron, tal como lo habían hecho los experimentos británicos, que el sistema de peróxido de hidrógeno no era ideal, ni lo era ninguna otra forma de propulsión diesel-eléctrica. El concepto de un barco de propulsión nuclear, imaginado por primera vez en 1939 y perseguido más firmemente por los visionarios navales, entusiasmó a varios defensores de los submarinos, entre ellos el almirante Charles Lockwood, un veterano comandante de submarinos del Pacífico en la Segunda Guerra Mundial, quien más tarde recordó una reunión sobre el concepto:

Si vivo hasta los cien años, nunca olvidaré aquella reunión del 28 de marzo de 1946, en una gran sala de conferencias del Bureau of Ships, con las paredes revestidas de pizarras que, a su vez, estaban cubiertas por diagramas, planos, figuras y ecuaciones. … solía ilustrar varios puntos mientras él [Philip Abelson, un físico brillante cuyo trabajo ayudó a allanar el camino para los reactores nucleares navales] leyó su documento, el primero que se presentó en cualquier lugar sobre submarinos de propulsión nuclear. Parecía sacado de las Veinte mil leguas de viaje submarino de Julio Verne.

A fines de 1947, la idea había recibido el apoyo del Jefe de Operaciones Navales, el Almirante Chester Nimitz, quien escribió un memorando secreto al Secretario de Defensa argumentando que:

El medio más seguro para llevar a cabo una misión submarina ofensiva contra un enemigo es mediante el uso de un verdadero submarino, es decir, uno que pueda operar sumergido durante períodos de tiempo muy largos y que sea capaz de alcanzar altas velocidades sumergido... es importante que el La Armada inicia una acción con [a] vista para impulsar el desarrollo, diseño y construcción de un submarino de propulsión nuclear.

Después de varias etapas de aprobación, la Armada persiguió los planes para un submarino nuclear a partir de 1948. Para 1949, los planes habían progresado hasta el punto en que dos diseños, uno para probar la forma de casco ideal para altas velocidades y el otro para probar un reactor naval, estaban listos para las pruebas.

El barco de prueba de forma de casco, diseñado por la Oficina de Barcos bajo el mando del veterano submarino Almirante Charles B. Momsen, fue un regreso a algunos de los conceptos básicos que John Holland había avanzado a principios de siglo: una embarcación elegante con una superestructura mínima, un hélice única, planos de popa para hacer que se sumerja y un timón detrás del tornillo: el diseño final del USS Holland. Esa forma básica fue adoptada y actualizada en el submarino experimental USS Albacore. Establecido en el astillero naval de Portsmouth, New Hampshire, entre 1950 y 1953, el atún blanco se construyó con un nuevo acero con bajo contenido de carbono conocido como HY-80. Encargado en diciembre de 1953, fue probado y modificado como resultado hasta 1961, antes de ser retirado y finalmente dado de baja en 1972. El diseño y las pruebas de Albacore allanaron el camino para la clase Skipjack de submarinos de ataque nuclear, que realizaba velocidades sumergidas de más de 25 nudos y podía sumergirse a mayores profundidades gracias al acero mejorado; Los diseñadores de la Marina habían estado buscando submarinos capaces de sumergirse hasta 1000 pies.

El primer submarino estadounidense de propulsión nuclear fue el USS Nautilus, cuyo diseño surgió de años de estudio y propuestas. El primer paso fue el desarrollo de un reactor prototipo para la nave, que surgió del trabajo de un equipo dirigido por un oficial de ingeniería enérgico, si no duro e intenso, a veces excéntrico, el Capitán Hyman G. Rickover. Sin tener en cuenta el protocolo y la "forma en que se hacen las cosas", Rickover asumió implacablemente un fuerte control del programa de investigación y ordenó el desarrollo simultáneo no solo del casco del submarino antes de probar su sistema de propulsión aún por desarrollar, sino también de dos prototipos de reactores simultáneos. . También insistió en "que el reactor Mark 1 [y Mark 2] sea tanto un prototipo de ingeniería como un prototipo a bordo, completamente dimensionado para adaptarse al casco de un submarino". Este enfoque costaría flexibilidad de ingeniería,

Los reactores se completaron y probaron en una instalación de la Comisión de Energía Atómica en el desierto a las afueras de Arco, Idaho, y el 25 de junio de 1953, el reactor Mark 1 alcanzó su nivel máximo de potencia. No contento con una prueba limitada, Rickover insistió en que el reactor funcionara durante un viaje a través del Atlántico. Mientras tanto, la división Electric Boat de General Dynamics colocó la quilla del submarino el 12 de junio de 1952 en su astillero de Groton, Connecticut, con el presidente de los Estados Unidos, Dwight D. Eisenhower, oficiando. El 21 de enero de 1954, la Primera Dama de los Estados Unidos, Mamie Eisenhower, bautizó al submarino con un nombre obvio y apropiado, Nautilus. Con una longitud de 323 pies y 9 pulgadas y una manga de 27 pies y 9 pulgadas, el USS Nautilus desplazó 3.533 toneladas. El submarino podría sumergirse profundamente y correr a 23 nudos indefinidamente, ya sea en la superficie o sumergido: su resistencia, gracias a su reactor, estaba limitado por la cantidad de suministros que podía transportar para la tripulación. Con su reactor de agua a presión (PWR) sellado, era más espacioso que los barcos de guerra y tenía comodidades como aire acondicionado (una necesidad dado el alto calor de la planta de vapor calentada por el reactor), mejores atracaderos y Coca-Cola y hielo. -máquinas de crema, así como una máquina de discos que jugaba con una moneda de cinco centavos. El 17 de enero de 1955, el USS Nautilus se hizo a la mar por primera vez y su comandante envió un mensaje histórico: "En marcha con la energía nuclear". Había amanecido una nueva era: la era de los primeros verdaderos submarinos, naves capaces de sumergirse profundamente y permanecer allí, capaces de dar la vuelta al mundo y de penetrar hasta la cima del mundo, bajo el hielo del Ártico. El sueño de Julio Verne por fin se había hecho realidad. La carrera de 25 años de Nautilus lo vio batir récords existentes de resistencia y velocidad de submarinos, y el 3 de agosto de 1958, se convirtió en el primer submarino en penetrar la capa de hielo del Ártico y llegar al Polo Norte, donde el Capitán William Anderson envió una señal histórica. , “Nautilus 90 Norte”. Anderson escribiría más tarde que: “Me quedé un momento en silencio, asombrado por lo que Nautilus había logrado. Había abierto un nuevo pasaje sumergido al noroeste, reduciendo enormemente el tiempo de viaje por mar para los submarinos nucleares desde el Atlántico hasta el Pacífico... Nautilus había abierto una nueva era, conquistado por completo el vasto e inhóspito Ártico". 

domingo, 7 de mayo de 2023

Drones cazasubmarinos

Finalmente: los drones pueden cazar submarinos, los barcos pueden comunicarse con submarinos sumergidos

Autor: Jaime Karremann || Navies of the World



Sin agua no habría vida y, peor aún, no habría barcos. Pero el agua no siempre es nuestra amiga: incluso los submarinos gigantes son muy difíciles de encontrar y la comunicación con los submarinos es casi imposible. La empresa canadiense Geospectrum Technologies ha dado con una solución a estos problemas.



HNLMS Zeeleeuw, foto de archivo. (Foto: Ministerio de Defensa holandés)

Se ordena a una fragata de guerra antisubmarina de la OTAN en el Océano Atlántico que busque un submarino nuclear que, según las observaciones de varios sensores, se sospecha que se está acercando rápidamente a una posición dentro del alcance de la fragata. La fragata está diseñada para combatir submarinos: el último sonar (sonar montado en el casco) está montado debajo de la proa y el sonar de baja frecuencia que se puede remolcar detrás del barco permite detectar submarinos desde una gran distancia. Además, el buque cuenta con un helicóptero de guerra antisubmarina y dos vehículos de superficie no tripulados (USV). Estos USV están equipados con el sonar activo / pasivo remolcable remolcado (TRAPS): un sistema que utiliza un sonar pasivo y activo.

“Es poco probable que un solo barco sobreviva a una confrontación con un submarino”, dice Sean Kelly, un ex oficial de guerra antisubmarina en la Marina canadiense que ahora trabaja en Geospectrum. “Pero si un grupo de barcos se enfrenta a un submarino, el submarino está en desventaja”.

“Al hacer que un helicóptero y USV busquen ese submarino específico, complementando así las capacidades a bordo de la fragata, en realidad estamos creando nuestro propio grupo de trabajo. Una gran ventaja táctica y útil en tiempos en que las armadas occidentales se enfrentan a una flota cada vez más pequeña”.

Tanto los USV como el helicóptero están desplegados a gran distancia del buque. “Los sonares propios de una fragata en realidad deberían permanecer fuera del alcance del submarino”, dice Kelly.



Un Seagull USV con TRAPS. (Foto: Elbit)

Nuestra fragata avanza hacia la posición donde puede comenzar la búsqueda del submarino hostil. Los USV y el helicóptero están preparados para el despliegue. “Digamos que el alcance del sonar ese día es de 30 millas náuticas”, continúa Kelly. Por lo tanto, el barco puede detectar submarinos hasta un alcance máximo de 30 millas con su propio sonar, pero también lo puede hacer el USV. “Entonces, si envía su USV 30 millas hacia adelante y el helicóptero también, puede buscar desde una distancia mayor. Ahora puede aumentar el alcance de su sonda a 60 millas náuticas o más de una sola vez. ”

Operando como un piquete ASW, la embarcación no tripulada baja el sonar activo de baja frecuencia al agua y comienza a hacer ping con fuerza. La señal de sonido se propaga a través del frío Océano Atlántico y rebota en los objetos, pero no solo de vuelta al USV. Kelly: "Haces ping en una ubicación, recibes en otra ubicación". En este caso, los ecos llegan al sonar remolcado detrás de la fragata y las señales recibidas son procesadas por el software a bordo de la fragata.

“En aguas como el Atlántico, el Pacífico o el Mar de China Meridional, quiero un sonar con la frecuencia más baja posible”, dice Kelly, “porque te da un rango enorme. Pero no todas las operaciones ASW tienen lugar en aguas tan profundas. ”

La posición del submarino enemigo en nuestra historia resulta ser más hacia las aguas costeras. Nuestra fragata recupera los USV y el helicóptero y navega hacia la nueva posición especificada. A bordo se hace un plan de cómo se puede ubicar el submarino en aguas poco profundas. “Los sonares de baja frecuencia son menos efectivos en las aguas costeras”, dice Kelly. “Aquí necesitamos un sonar de frecuencia media”.

Casi todos los sonares navales operan en una sola frecuencia. Sin embargo, este no es el caso con TRAPS. Kelly: “Los USV se han recuperado y solo necesitamos reemplazar una pequeña parte para poder desplegar un sonar de frecuencia media. Media hora más tarde, el USV está de vuelta en el mar y el USV puede buscar el submarino nuevamente. Si no puede cambiar esa frecuencia, perderá el submarino en poco tiempo. Si puedes adaptarte rápidamente, tienes una gran ventaja táctica. ”



TRAPS con sonares pasivos y activos visibles. La parte negra del transmisor debe cambiarse si se necesita otra frecuencia. (Foto: Geospectrum)

TRAPS

El nombre del sistema TRAPS se mencionó anteriormente en artículos en Marineschepen.nl y Naviesworldwide.com. Concretamente en el artículo sobre el buque de superficie no tripulado Seagull, que fue desarrollado por Elbit Systems y está siendo construido en Holanda por De Haas Maassluis.

Como acabamos de ver en el ejemplo, una adición importante a ese USV específico es TRAPS: un conjunto de sonar que consiste en una matriz larga equipada con hidrófonos para escuchar, y la parte activa está formada por un transmisor.

TRAPS es el producto estrella de Geospectrum, que se centra en la acústica submarina para aplicaciones navales y civiles. El sistema ha estado en desarrollo durante algún tiempo y recientemente se ha instalado en varios barcos de la Armada canadiense. TRAPS también se puede utilizar como un complemento de sonda para patrulleras, por ejemplo. Sin embargo, en este artículo nos centraremos en la versión destinada a los USV. Esta última versión es extraordinaria, ya que actualmente, según Geospectrum, no hay ningún sonar para barcos no tripulados que esté operativo en este nivel.

El aspecto exacto de TRAPS en la práctica depende completamente de los requisitos del cliente. “Tenemos cientos de opciones”, dice Kelly. “Cada marina opera en circunstancias ligeramente diferentes, por lo que no hay un sonar que funcione para todas ellas. Y durante las operaciones, las condiciones a menudo también cambian para los buques de guerra. Por lo tanto, TRAPS también es altamente modular y, por lo tanto, puede adaptarse a la situación en curso”.

Otra ventaja de que el sistema sea modular es el hecho de que no tiene que regresar a puerto cuando hay un mal funcionamiento, sino que puede reemplazar fácilmente la pieza rota.

El sonar activo puede hacer ping en frecuencias entre 2 kHz y 10 kHz, simplemente cambiando la parte de transmisión. Por lo tanto, TRAPS es adecuado para operaciones biestáticas (transmisión y recepción en diferentes ubicaciones). También se pueden acomodar formas de onda complejas, asegura Kelly. Con el sonar pasivo, es la longitud del conjunto de sonar lo que determina la frecuencia más baja (y cuanto más baja es la frecuencia, mayor es el alcance que se puede lograr).


Los cambios en el diseño de las fragatas ASW belgas y holandesas han afectado los tamaños de los USV .

Integración de TRAPS con pequeños USV

Esto es bueno y todo, pero ¿también es útil para las armadas de los Países Bajos y Bélgica? Después de todo, hace aproximadamente un año, se aprobó un cambio de diseño que condujo a una reducción del espacio para acomodar embarcaciones no tripuladas a bordo de las futuras fragatas ASW holandesas y belgas. En lugar de USV de 12 m, estos futuros buques tendrán una longitud máxima de 7 metros.

Esto significa que la versión estándar del Seagull ya no se puede facilitar en estos barcos. Una versión más pequeña tendrá un alcance reducido y no se puede usar en ciertos estados del mar. ¿Cómo afecta esto a las TRAMPAS?

TRAPS no está hecho para un tamaño de USV específico. “Cuando nos enfrentemos a menos espacio, haremos que la parte pasiva de TRAPS sea más pequeña. Esto significa que si la embarcación se vuelve más pequeña, las capacidades pasivas se reducirán”, explica Kelly. Sin embargo, “consideramos que la parte activa es la más importante, nunca cambiaremos eso”.

¿Significa todo esto que podemos respirar aliviados? No. “Un USV de 7 metros será muy difícil”, señala Kelly. “Definitivamente lo investigaremos, pero el peso es el problema. No tanto la eslora del barco. Coincidentemente, otra marina decidió recientemente extender la longitud de sus USV en relación con TRAPS”, agrega Kelly con esperanza.


El buque de defensa costera canadiense HMCS Shawinigan (clase Kingston) opera con una versión TRAPS en contenedores. (Foto: Geospectrum)

Ventas

TRAPS ya ha sido vendido a la Marina Canadiense. Y recientemente, una armada en "Asia" adquirió varios sistemas TRAPS. “Desafortunadamente, no podemos decir qué armada es”, dice Kelly. “También estamos negociando con una armada en el Medio Oriente y esperamos más ventas en el futuro cercano”.

Comunicación con submarinos

Si bien TRAPS está destinado a detectar submarinos, Geospectrum ha desarrollado LRAM para comunicarse con submarinos sumergidos.

La comunicación submarina es extremadamente difícil debido a las difíciles propiedades del agua de mar. ¿Cómo puede un submarino recibir mensajes de su cuartel general cuando está realizando una operación encubierta a miles de kilómetros de distancia? Imposible si el barco está navegando en aguas muy profundas. Cada vez más submarinos tienen comunicación por satélite. Sin embargo, para usar esto, el barco tiene que ir a la profundidad del periscopio, y en ese momento hay una mayor probabilidad de detección.

En el pasado, los submarinos usaban el llamado procedimiento de buzón: un avión de patrulla marítima volaba desde, por ejemplo, Keflavik (Islandia) a una posición predeterminada en el Mar de Noruega con el submarino de la OTAN instalando su antena, después de lo cual ambos podían transmitir mensajes. a corto alcance. Sin embargo, como resultado, las unidades rusas pudieron rastrear el avión y detectar el submarino.

Otra opción más eran las comunicaciones de frecuencia extremadamente baja (ELF). Durante la Guerra Fría, varias torres de telefonía móvil gigantes en los EE. UU., Gran Bretaña y Noruega emitían frecuencias extremadamente bajas con una potencia tremenda. Por lo tanto, los mensajes podrían enviarse a submarinos sumergidos que operaban lejos del puerto, pero el costo de mantener una estación de transmisión tan grande era enorme. Por lo tanto, ya no están en uso.

Geospectrum ahora ha desarrollado una solución: el módem acústico de largo alcance o LRAM. Cualquier transmisor se puede vincular a LRAM, por ejemplo, TRAPS para rangos más cortos, o el sistema C-BASS de muy baja frecuencia, otro producto de Geospectrum, para lograr comunicaciones de largo alcance.
 

Con LRAM y C-BASS, un barco puede enviar un mensaje a un submarino sumergido que opera a 1000 millas náuticas (1852 km) de distancia. (Foto: Google Maps, texto agregado por Naviesworldwide.com)

De largo alcance

Hablando de largo alcance nos referimos a un alcance realmente largo: 1000 millas náuticas. “Pero también se puede hacer a una distancia extremadamente corta: 10 yardas”, dice Sean Kelly. “LRAM permite la comunicación con buzos, vehículos submarinos no tripulados y submarinos”.

Gracias a LRAM es posible enviar mensajes a submarinos desde tierra, pero también desde barcos. Esto significa que un comandante de un grupo de trabajo que incluye un submarino también puede enviar mensajes. “Si un submarino es parte de un grupo de trabajo, ese submarino específico todavía opera principalmente por sí solo y recibe mensajes tal vez una vez al día o cada pocos días”, dice Kelly. “Sin embargo, puede haber un cambio significativo en un día o en unas pocas horas”.

Se destacará una transmisión LRAM usando C-BASS, sin embargo, las grandes distancias que se cubren en todas las direcciones tienen la ventaja de que esto es de poca utilidad para un oponente: el área con un radio de 1000 millas náuticas es simplemente demasiado grande para buscar un submarino.


Familia C-BASS. (Foto: Geospectrum)

C-BASS


Para poder comunicarse a tan grandes distancias se necesita un transductor submarino que trabaje a muy baja frecuencia y tenga mucha potencia. “Cuando comenzamos el proyecto, había un sistema similar”, recuerda Sean Kelly. “Sin embargo, ese sistema tenía el tamaño de una camioneta de reparto grande y pesaba 3 toneladas. Totalmente inadecuado para buques de guerra.

“Prometimos construir un pequeño sistema que pudiera transmitir a 40 Hz, que es extremadamente bajo, con una potencia de 200 dB. Algunos expertos dijeron que no podíamos hacerlo y dijeron que podríamos traer el sistema una vez que estuviera terminado y ellos explicarían por qué no funcionó”, dice Kelly.

“Entonces comenzamos a desarrollarlo y se convirtió en un dispositivo con un diámetro de un metro, un peso de 300 kg que transmite a 40 Hz. La potencia era de más de 200 dB. Se lo mostramos a los expertos mencionados anteriormente e inmediatamente compraron dos. Es un gran avance en la acústica submarina. ”

Luego estaban las pruebas en el mar. Fueron un éxito, el pequeño dispositivo podía enviar y recibir mensajes a una distancia de 1.000 millas náuticas.

Transmisor C-BASS en sistema LRAM puesto en el agua por un barco. (Foto: Geospectrum)

Mensajes de texto

Sin embargo, los submarinos aún no pueden transmitir videos; solo son posibles mensajes de texto muy cortos. “Es más como código Morse codificado”, explica Kelly. “Tenemos 16.000 mensajes preprogramados en el sistema, entre los cuales el remitente puede elegir. También hay un método para crear tus propios mensajes, pero en realidad no está diseñado para eso. ”

Por lo tanto, el ancho de banda es limitado, pero aún mucho más que el utilizado durante la transmisión submarina de la Guerra Fría, dice Kelly. “Una estación de transmisión ELF cuesta miles de millones de dólares, sus antenas de radiofrecuencia deben tener millas de largo. LRAM cuesta solo una fracción, se puede poner en un barco, es altamente móvil y tiene mucho más ancho de banda”.

Además, el sistema está diseñado para ser confiable, porque normalmente el remitente no recibe un mensaje de respuesta del submarino.

A menos que el submarino esté en peligro. Kelly: “Algunas armadas también están interesadas en LRAM desde una perspectiva de seguridad. Un submarino en peligro o tirado en el fondo del mar puede enviar un mensaje sobre su estado y su posición. ”

El mar seguirá siendo un entorno desafiante durante mucho tiempo. Sin embargo, debido a los últimos avances en la guerra antisubmarina utilizando embarcaciones no tripuladas y comunicaciones submarinas, las cosas realmente cambiarán bajo el agua.

Este es un artículo patrocinado. Con un artículo patrocinado, un cliente elige el tema del artículo. Geospectrum pagó a Marineschepen.nl para escribir este artículo sobre este tema, pero Geospectrum no influyó en el contenido periodístico.



domingo, 16 de octubre de 2022

Batalla del Atlántico: Armas especiales

Batalla del Atlántico - Armas especiales

Weapons and Warfare

 



Un Wellington con radar de 10 cm y una Leigh Light. El escáner estaba en el 'mentón' debajo de la nariz del avión. El receptor de advertencia Metox no pudo detectar este nuevo radar, por lo que muchos submarinos fueron sorprendidos en la superficie, como el U966 (abajo), que fue bombardeado y hundido unos momentos después de que se tomara esta fotografía el 10 de noviembre de 1943 frente a Cabo Ortegal en el Cantábrico.


A principios de 1943, la Batalla del Atlántico estaba finamente equilibrada: ambos bandos en la sombría lucha estaban en una posición potencialmente ganadora. Los comandantes y tripulaciones de los submarinos supervivientes eran hábiles, altamente disciplinados y bien dirigidos, al igual que los capitanes de escolta y sus tripulaciones. Todos ellos habían adquirido su experiencia en una escuela muy dura y estaban respaldados por científicos cuyo trabajo, de una forma u otra, finalmente resultaría decisivo.

Uno de los científicos británicos, el profesor Blackett, dirigía el departamento de 'Investigación operativa', que parecía poco glamoroso, cuyos científicos aportaron un pensamiento muy original a la guerra en el mar. Fue de estos hombres que el C-in-C Coastal Command, Air Chief Marshal Sir John Slessor, dijo:

“Hace algunos años, nunca se me habría ocurrido, ni creo que a ningún oficial de ningún servicio de combate, que lo que la RAF pronto llamó un “Boffin”, un caballero con sacos de franela gris, cuya ocupación en la vida había sido previamente sido algo marcadamente no militar, como la biología o la fisiología, podría enseñarnos mucho sobre nuestro negocio. Sin embargo, así fue.

Uno de los ejemplos más efectivos de investigación operativa fue el establecimiento de cargas de profundidad para aeronaves. Estos estaban configurados para explotar a una profundidad de 100 pies, suponiendo que, cuando un submarino estaba bajo ataque aéreo, habría visto la aeronave acercándose y se habría estrellado en picado a una profundidad de 50 a 100 pies en el momento en que la aeronave estaba encima y había retirado sus cargas. Uno de los 'Boffins' de Blackett, EJ Williams, investigó lo que realmente sucedió: descubrió que cuando los aviones avistaron submarinos tres de cada cuatro veces, estaban en la superficie o simplemente buceando y, por lo tanto, podían ser atacados con precisión; si, por el contrario, el submarino ya estaba sumergido cuando se avistó, entonces con toda probabilidad se hundiría y se perdería. Williams demostró que si un submarino sumergido se consideraba un objetivo perdido y los ataques se concentraban en submarinos de superficie o en inmersión, se podía lograr una mejor tasa de 'muerte'. Todo lo que se requería era alterar el ajuste de profundidad de las cargas de 100 a veinticinco pies. Tan pronto como se hizo esto, la tasa de éxito en los hundimientos de submarinos aumentó de dos a cuatro veces, un resultado tan dramático que los sobrevivientes pensaron que la carga de profundidad británica había recibido una doble carga de explosivo.

Otro resultado revelador de la investigación operativa fue un análisis brillante del tamaño óptimo de los convoyes. Se encontró que se perdió la misma cantidad de barcos, en términos generales, ya sea que el convoy fuera grande o pequeño. Las cifras reales fueron una pérdida promedio del 2,6% para convoyes de menos de cuarenta y cinco barcos y del 1,7% para convoyes más grandes. El número de escoltas, unas seis, era el mismo en todos los casos, ya que el área de un gran convoy es sólo ligeramente mayor que la de uno pequeño. (El perímetro de un convoy de ochenta barcos sería sólo una séptima parte más largo que el de un convoy de cuarenta barcos.) Incluso si un submarino atravesara la pantalla de escoltas, sería poco probable que hundiera más barcos en un convoy grande que en uno pequeño,

A mediados de 1943, las técnicas de grandes convoyes habían reducido en un tercio el número de escoltas cercanas necesarias, lo que permitía la formación de grupos de escolta de apoyo, que podían ir en ayuda de cualquier convoy bajo ataque y buscar submarinos que se unieran o abandonaran el área. De esta forma el convoy no quedó desprotegido como anteriormente cuando sus escoltas partieron a perseguir submarinos.

Por muy eficaces que fueran las escoltas, no podían derrotar solos a los submarinos. Los aviones equipados con radar eran esenciales, ya sea trabajando con los buques de superficie o atacando a los submarinos directamente, pero aún quedaba el Gap, ya mencionado, que no podía ser patrullado de manera efectiva por aviones en tierra, al menos hasta que un número suficiente de barcos largos. -aviones de rango estuvieron disponibles. La respuesta obvia era utilizar aviones antisubmarinos de corto alcance que operaran desde portaaviones, pero los únicos portaaviones disponibles eran desesperadamente escasos: el HMS Courageous y el HMS Glorious se hundieron en el primer año de la guerra y en noviembre de 1941. el más famoso de todos, el HMS Ark Royal, fue torpedeado por el U81 mientras transportaba cazas a Malta. Los pocos portaaviones restantes de la Flota eran demasiado valiosos para correr el riesgo de proteger los convoyes mercantes.

Los primeros aviones británicos que sobrevolaron convoyes en el Atlántico medio fueron los cazas Hurricane que fueron catapultados desde el HMS Pegasus (anteriormente el primer Ark Royal, un hidroavión auxiliar que data de la Primera Guerra Mundial), más tarde complementados por barcos mercantes requisados ​​y convertidos que fueron equipados con una sola catapulta y un caza Hurricane o Fulmer. Comenzaron a funcionar en 1941, no para atacar directamente a los submarinos (los cazas no llevaban cargas de profundidad), sino a los Focke Wulfe 200 Condors de KG40 de largo alcance, que se utilizaban como aviones de reconocimiento y observación para las manadas de lobos de los submarinos. así como bombardear barcos aislados. Catapultar cazas fue una táctica exitosa, hasta cierto punto: la aeronave no pudo aterrizar de nuevo en el barco y, si estaba fuera del alcance de la tierra más cercana, tuvo que ser abandonada después de su único vuelo.

No fue hasta la primavera de 1943, que los portaaviones de escolta (CVE) en gran parte construidos en Estados Unidos, apodados 'Jeep' o 'Woolworth', comenzaron a navegar con los convoyes mercantes. Veintitrés CVE finalmente fueron utilizados solo por la Royal Navy. Llevaban unos veinte aviones: cazas Grumman Martlet (ahora conocidos por su nombre estadounidense, Wildcats) y Fairey Swordfish. Además de estos barcos especialmente diseñados, había varios portaaviones mercantes (barcos MAC), que eran petroleros o graneleros a los que se les había quitado la superestructura y se les había instalado una cubierta de vuelo corta. Al igual que los barcos CAM, también volaron el Red Ensign y transportaron una carga normal además de sus cuatro Swordfish. Desde el momento de su introducción en 1943 hasta el final de la guerra, ningún submarino hundió ni un solo barco en ningún convoy en el que navegaran estos portaaviones improvisados.

Aunque los portaaviones de escolta hicieron mucho para cerrar la brecha, fueron aumentados, por orden personal del presidente Roosevelt, con unos sesenta Liberators B24 consolidados para complementar el pequeño número que ya estaba en servicio con el Escuadrón 120. A estos grandes bombarderos cuatrimotores se les quitó gran parte de su blindaje y armas defensivas normales para dar paso a la mayor cantidad de tanques de combustible, pero podían volar mucho más allá del Atlántico y aún podían permanecer con un convoy hasta por tres horas.

Hubo una lucha para obtener estos B24 Liberators adicionales, ya que los requisitos de la ofensiva de bombardeo contra Alemania habían tenido prioridad. El Coastal Command se había quedado sin aviones cuatrimotores, teniendo que arreglárselas primero, como hemos visto, con tipos inadecuados como el Avro Anson, que carecía de alcance y prácticamente todo lo necesario para el trabajo antisubmarino. El Sunderland Flying Boat ayudó, pero también tenía un alcance relativamente corto. El mejor de los primeros aviones fue el estadounidense Catalina; Se utilizaron Whitleys y Wellingtons bimotores, pero aún carecían del alcance vital y, de todos modos, eran bombarderos obsoletos convertidos para Coastal Command. Finalmente, a fines de 1942, se recibieron algunos Halifax II de cuatro motores, seguidos más tarde por una versión marítima: el Halifax V, pero no se suministraron Lancaster hasta después de la guerra.

La razón fue que estos aviones británicos de cuatro motores simplemente no podían librarse de su función principal, el bombardeo de Alemania. En cualquier caso, el Estado Mayor del Aire creía que la mejor forma de ataque contra los submarinos era bombardear sus bases y los astilleros donde se construían. De hecho, ningún submarino fue destruido al bombardear los corrales de submarinos en la costa atlántica francesa. Los corrales fueron alcanzados sin problemas: se arrojaron unas 15.000 toneladas de bombas sobre las bases, pero las enormes estructuras de hormigón armado eran casi indestructibles. Más de 100 bombarderos pesados ​​se perdieron en ataques a las bases de submarinos solo en los primeros cinco meses de 1943.

En enero de 1943, escoltas y aviones británicos, canadienses y estadounidenses se enfrentaron a un promedio de 116 submarinos en el mar cada día. Esta gran flota iba a ser ayudada por el trabajo de los criptoanalistas alemanes, el B-Dienst, cuyos descifradores habían penetrado el código de radio del convoy aliado. Por lo tanto, el alto mando de los submarinos podría trazar la ruta de muchos de los convoyes a través del Atlántico.

En marzo, basándose en la información suministrada por los criptoanalistas, se concentraron treinta y nueve submarinos para interceptar dos convoyes: SC122, un convoy "lento" de cincuenta y dos barcos, y HX229, uno "rápido" de veinticinco. HX229 fue atacado primero y ocho barcos se hundieron en otras tantas horas. Durante tres días continuó la batalla en curso, los dos convoyes se unieron para ayudar a sus escoltas combinadas a luchar contra los submarinos; pero en total, los nueve barcos, con un total de 140.000 toneladas, fueron hundidos, cuatro de ellos solo por el U338, por la pérdida de solo tres submarinos.

Ese éxito alemán sería el punto culminante de la batalla; si hubieran podido sostenerlo, la ambición de Doenitz de cortar la línea de vida entre Gran Bretaña y Estados Unidos se habría hecho realidad. No iba a ser. Los portaaviones de escolta y el avión B24 de largo alcance ahora cerraron la brecha de forma permanente y, lo que es más importante, los científicos estaban a punto de proporcionar otra arma que finalmente resultaría decisiva: el radar ASV de 10 cm.

Todo comenzó con Randall y Boot en su laboratorio de la Universidad de Birmingham y el desarrollo del magnetrón de cavidad, trabajo, se recordará, realizado bajo el patrocinio del Almirantazgo. El radar 271 de a bordo había sido el primer conjunto operativo de 10 cm y, tras su éxito, se había comenzado a trabajar en el ASV de 10 cm ya en el invierno de 1941; pero la presión de la RAF había asegurado la prioridad para el H2S y ese radar se había desarrollado primero. Sin embargo, el equipo de H2S bajo la dirección de Dee en Malvern había diseñado una capacidad ASV en H2S. De hecho, se conocía en TRE como H2S/ASV.

La contramedida Metox que permitía advertir a las tripulaciones de los submarinos de la aproximación del avión equipado con ASV de 1,5 metros había hecho que un cambio drástico de longitud de onda fuera esencial. Dado que se sabía que los alemanes, al carecer del magnetrón, consideraban poco práctico el radar de 10 cm, se pensó que era poco probable que esperaran que los aviones británicos lo usaran. Diez centímetros era, por lo tanto, la respuesta obvia.

Hubo cierta oposición: en primer lugar, Bomber Command reclamaba prioridad total para el radar H2S en el bombardeo de Berlín e, incluso en el propio TRE, muchas personas sintieron que el ASV de 10 cm estaba insuficientemente desarrollado y que su introducción era prematura. La adaptación de H2S a ASV fue, como recuerda Sir Bernard Lovell:

'... muy amargamente opuestos y no se nos permitió desviar ningún equipo H2S del Bomber Command. Al final, fabricamos el equipo [ASV] nosotros mismos en TRE.'

La respuesta a las objeciones a ASV fue proporcionada por el tonelaje de barcos hundidos en 1942: 5.970.679 toneladas - 1354 barcos - en septiembre. Metox anuló el éxito inicial de ASV aerotransportado y Leigh Lights, por lo que en el otoño de 1942 se tomó la decisión de desviar algunos conjuntos H2S de Bomber Command para instalarlos como ASV Mk III en Leigh Light Wellingtons.

La principal diferencia entre ASV Mk III y H2S estaba en la posición del escáner: simplemente no era posible, debido a la distancia al suelo y otros problemas estructurales, montar la cúpula H2S debajo de un Wellington. La única alternativa posible estaba en un 'mentón' debajo de la nariz; esto implicó un rediseño considerable del escáner, que en cualquier caso ahora tenía que trabajar a una altitud de 2000 pies en lugar de 20.000, con un punto ciego de 40° detrás de la aeronave. Incluso cuando se resolvieron estos problemas, la RAF provocó más demoras, en un momento en que las pérdidas de envío eran de alrededor de 600,000 toneladas por mes, al insistir en refinamientos innecesarios, como la incorporación de instalaciones de aterrizaje ciego y baliza de referencia en los conjuntos. .

A pesar de todas las dificultades y demoras, se construyeron a mano dos prototipos de ASV Mk III en TRE y se instalaron en dos Wellington VIII (LB129 y LB135) en Defford durante diciembre de 1942. A fines de febrero de 1943, doce Wellington con base en Chivenor, respaldado por casi tantos científicos de TRE como aviadores, tenía ASV instalados. En la noche del 1 de marzo, dos Wellington despegaron de Chivenor para la primera patrulla con el nuevo radar sobre el Golfo de Vizcaya (fue solo un mes después de la primera incursión de H2S en Alemania por Bomber Command). No se informaron contactos pero, para alivio de los científicos, las tripulaciones no tuvieron dificultades con el nuevo equipo.

Durante la noche del 17 de marzo, el ASV de 10 cm hizo el primer contacto con un submarino a una distancia de nueve millas; desafortunadamente, el Leigh Light se atascó y no fue posible ningún ataque. El mismo avión, un Wellington XIII (HZ538), obtuvo otro avistamiento la noche siguiente a siete millas; esta vez todo salió bien y el submarino fue atacado con seis cargas de profundidad, la tripulación informó que "el submarino estaba completamente en la superficie y en marcha, sin mostrar signos de sospecha de ataques". Este fue, por supuesto, el punto central del ASV de 10 cm; Dado que Metox no pudo detectar el nuevo radar, la tasa de éxito aumentó, particularmente en el Golfo de Vizcaya. En marzo, trece submarinos fueron atrapados por la noche y hubo veinticuatro ataques en abril. Fue el mismo éxito que había disfrutado Coastal Command en junio de 1942 cuando se introdujo por primera vez el Leigh Light:

El éxito del nuevo ASV y el mayor número de aviones de largo alcance fue tal que en mayo dos convoyes, el ON 184 y el HX239, llegaron a puertos británicos sin perder un solo barco: la armada alemana, en cambio, perdió seis U -barcos tratando en vano de atacarlos. En total, no menos de cuarenta y un submarinos fueron hundidos por escoltas y aviones terrestres y portaaviones ese mes. Ante estas pérdidas cada vez mayores, Doenitz ordenó a sus submarinos que lucharan en la superficie cuando fueran atacados por aviones a la luz del día. Se agregaron armas antiaéreas adicionales al armamento existente, e inicialmente los submarinos fuertemente armados tuvieron cierto éxito contra aviones desprevenidos. Pero la RAF pronto desarrolló un contador muy simple; los aviones que encontraron un submarino en la superficie simplemente volaron en círculos, justo fuera del alcance de los cañones del submarino, y llamaron a las unidades de superficie más cercanas. El submarino estaba constantemente vigilado y, tan pronto como las delatoras columnas de rocío indicaban que el submarino estaba inflando sus tanques para sumergirse, el avión se acercaba para un ataque. Esto se convirtió en una carrera sombría: la 'batalla de los segundos'. Con una tripulación altamente entrenada, era posible despejar la cubierta de un submarino y sumergirse en unos treinta segundos. Si bajaban en ese tiempo tenían una oportunidad; muchos no lo hicieron y fueron hundidos por las cargas de profundidad de la aeronave o los proyectiles de cohetes.

A medida que se hundían más y más submarinos y los afortunados que habían regresado cojeando a la base informaban que los equipos Metox no advertían sobre ataques aéreos, los científicos alemanes estaban perplejos. Descontaron el radar de 10 cm por la razón no muy sólida de que ellos mismos no habían podido producir uno práctico.

Luego, un aviador de la RAF capturado mencionó durante el interrogatorio que el avión atacante se dirigía a los submarinos por señales radiadas por el propio equipo Metox. Hasta el día de hoy, la identidad de este hombre sigue siendo un misterio; también un misterio es su motivo. Cualquiera que sea la razón, el efecto sobre los alemanes de esta inteligencia falsa fue dramático.

Las pruebas de laboratorio mostraron que el receptor Metox emitía una pequeña señal (la mayoría de los aparatos de radio lo hacen). El cuartel general de los submarinos ordenó inmediatamente a toda la flota que apagara sus receptores de inmediato. Luego, los decorados se rediseñaron ampliamente y se proyectaron por completo, de modo que no se irradió la señal más pequeña. No hizo ninguna diferencia, por supuesto. Los submarinos todavía fueron atacados desde los negros cielos nocturnos; un momento navegando en la superficie, seguro y aparentemente invisible, al siguiente una luz cegadora se dirige directamente hacia ellos, luego el rugido de cuatro motores de 1200 hp y el estallido de las cargas de profundidad colocadas a poca profundidad cuando un B24 Liberator o un Sunderland volaban sobre ellos. a cincuenta pies.

¿Cómo encontraban ahora los aviones sus pequeños objetivos? Los conjuntos de Metox ya no irradiaban: el infrarrojo era una posibilidad, pero los científicos alemanes llegaron a la conclusión de que era mucho más probable un radar nuevo y desconocido. Su identidad no se hizo esperar: un bombardero nocturno Stirling de la RAF, equipado con H2S, fue derribado sobre Róterdam. Como temían los expertos británicos, el magnetrón se recuperó intacto y los alemanes establecieron su frecuencia y longitud de onda de trabajo: 10 centímetros. Iba a ser reconstruido como el 'Rotterdam Geräte', pero de momento la respuesta al problema de los submarinos era clara y sencilla: un nuevo receptor de avisos tipo Metox, pero trabajando en 10 centímetros.

Ahora, recibir pulsos de radar de 10 cm es una propuesta mucho más fácil que transmitirlos, y un receptor de búsqueda, el Telefunken FuMB7, 'Naxos', se instaló rápidamente en los submarinos del Atlántico. Un tripulante de la torre de mando sostenía una pequeña antena dipolo cada vez que salía a la superficie un submarino; cualquier pulso de 10 cm sería recogido y el receptor daría una advertencia en un tubo de rayos catódicos debajo del submarino. El aparato de Naxos cubrió la banda 'S', de 2500 a 3700 mHz (12 a 9 cms).

Naxos no fue tan efectivo como Metox por dos razones: era omnidireccional: todo lo que hacía era advertir que un avión equipado con ASV estaba en las cercanías; y esa vecindad estaría bastante cerca, ya que la antena dipolo simple no tenía ganancia, y el aparato en sí era insensible. Los primeros Naxos tenían una desventaja adicional en el sentido de que la antena, por pequeña que fuera, todavía tenía que bajar la torre de mando para que su cable pasara por la escotilla hermética a la presión. La manipulación de una gran longitud de cable coaxial a menudo lo dañaba, con el resultado de que el receptor no daba ninguna advertencia.

La gran preocupación del lado aliado era que los alemanes encontrarían un receptor de advertencia efectivo tan bueno en 10 centímetros como lo había sido Metox en 1½ metros en septiembre de 1942. Este problema había estado muy presente en la mente del equipo H2S/ASV en TRE, donde había estimaciones bastante pesimistas de cuánto tiempo el ASV Mk III sería "seguro". Era un axioma de esos días que cualquier dispositivo nuevo se consideraba a salvo de contramedidas por solo unas semanas y, por lo tanto, siempre que era posible, un modelo de segunda generación estaba listo para tomar el relevo. El contador inmediato obvio, en caso de que Naxos demostrara ser eficiente, era un salto a otra frecuencia; esto significaba longitudes de onda aún más cortas: hasta la banda 'X', 3 centímetros. Se había desarrollado un H2S de banda X y también se produjo una versión ASV. Sin embargo, simplemente cambiar la longitud de onda era solo una solución a corto plazo: tarde o temprano los alemanes lo descubrirían y proporcionarían un receptor adecuado. Pero había otras formas de derrotar a los equipos de escucha.

ASV Mk VI, que operaba con 3 centímetros, se entregó a Coastal Command en enero de 1944. Tenía dos características nuevas. Su alcance se incrementó aumentando la salida de 50 kw a 200 kw, una cifra asombrosa para un radar aerotransportado en esos días. La medida anti-escucha fue la provisión de un control atenuador. El operador, una vez que había obtenido un contacto, podía reducir la salida del radar hasta un punto en el que podía mantener el objetivo en su pantalla mientras volaban hacia el submarino. El efecto de esto en los oyentes enemigos fue que los pulsos no parecían volverse más fuertes y, por lo tanto, asumieron que el avión no los estaba dirigiendo hasta que fue demasiado tarde para sumergirse a un lugar seguro.



Un tubo Schnorkel cubierto con 'Sumpf'. Este radar redujo los retornos hasta cierto punto, pero pronto se separó de la estructura del submarino por la acción de las olas y los depósitos de sal redujeron su eficacia eléctrica. El pequeño dipolo es la antena de Túnez; dio un buen eco a los radares de 3 cm.

Los alemanes hicieron todo lo posible para contrarrestar el ASV de 3 cm: había un nuevo receptor de búsqueda, FuMB36, el 'Tunis', que cubría de 15 a 3 centímetros; y los estandartes del periscopio, la canalización del schnorkel e incluso, en algunos casos, toda la torre de mando se cubrieron con un material especial llamado 'Sumpf', un sándwich de caucho con gránulos de carbono impregnados. El sándwich estaba compuesto por dos tipos de Sumpf: uno tenía la propiedad de resistencia variable sobre su área, el otro dieléctrico variable o densidad eléctrica. El objeto del revestimiento, cuyo nombre en código es 'Schornsteinfeger' (deshollinador), era hacer que las estructuras sobre el agua absorbieran los pulsos del radar, reduciendo la fuerza del eco y haciéndolos menos 'visibles' para el radar. En pruebas bajo condiciones de laboratorio, Sumpf pareció ofrecer alguna promesa, pero no fue realmente práctico. El mar tendió a quitar la cubierta, los depósitos de sal redujeron sus propiedades eléctricas y, finalmente, las antenas permanentes ahora instaladas para detectar los radares de 3 cm arrojaron excelentes ecos. Así que a pesar de estas medidas continuaron los ataques a los submarinos. La Luftwaffe envió cazas Ju88 al Golfo de Vizcaya para interceptar el avión del Coastal Command; la RAF respondió escoltando las patrullas antisubmarinas con Mosquitoes y Beaufighters, y la Royal Navy aumentó sus grupos de superficie de 'Hunter Killer'.

Luego apareció una nueva fase de la guerra: la bomba planeadora controlada por radio, la Henschel 293. Esta bomba logró cierto éxito, pero pronto fue contrarrestada bloqueando su simple enlace de comando por radio. A lo largo de 1943 se libró la Batalla del Golfo de Vizcaya. Resultó en el hundimiento de cuarenta submarinos. Refiriéndose al uso de ASV de 10 cm, Hitler admitió:

El revés temporal de nuestros submarinos se debe a un solo invento técnico de nuestro enemigo.

Los alemanes también tenían nuevos inventos técnicos, por ejemplo, 'Pillenwerfer' o 'Bolde', una abreviatura de la palabra alemana 'Lügenbold', que significa mentiroso habitual. Se trataba de un bote de productos químicos que, al ser liberado desde un submarino, provocó una nube de finas burbujas que bloquearon el ASDIC: una versión marina de 'Window'.

También había un torpedo acústico, el T5, Zaunkönig, que podía "dirigirse" al sonido producido por las hélices de un barco que navegaba entre cinco y veinticinco nudos. Estos torpedos eran conocidos por los aliados como GNAT, torpedos acústicos navales alemanes; se utilizaron por primera vez en funcionamiento en septiembre de 1943 cuando se hundieron la fragata Lagen y dos buques mercantes en el convoy ONS18/ON202. Durante los siguientes seis días, los nuevos torpedos hundieron tres barcos mercantes más y dos escoltas, aunque los alemanes perdieron tres submarinos durante el ataque. Pronto se idearon contramedidas. En primer lugar, era muy lento para un torpedo (unos veinticinco nudos) y, por lo tanto, podía evitarse con vigías alerta; y luego se encontró que, a ciertas revoluciones del motor, el sonido producido por las hélices del barco hacía ineficaz el guiado de los torpedos. El agua perturbada y las explosiones producidas por la caída de cargas de profundidad también atrajeron a los torpedos; y finalmente se ideó un 'Foxer': un señuelo que producía ruido que consistía en dos tramos de tubería de acero que chocaban cuando se remolcaban a cierta distancia detrás de los escoltas y sobre los cuales el GNAT se dirigía y explotaba sin causar daño. Las contramedidas fueron tan efectivas que los torpedos GNAT pronto se retiraron.

El siguiente dispositivo alemán fue un invento holandés medio olvidado, el Schnorkel, ahora familiar para los buceadores. Un baúl de aire en la torre de mando permaneció sobre la superficie cuando el submarino estaba completamente sumergido, lo que le permitió navegar bajo el agua impulsado por sus motores diesel. Había una válvula operada por flotador en la parte superior del schnorkel, justo por encima de la línea de flotación, que cerraba automáticamente la canalización cuando el submarino se zambullía; desafortunadamente, el oleaje, las olas o un barco mal trimado también podían cerrar la válvula, lo que tenía un efecto muy desagradable en la tripulación, ya que los grandes motores diesel aspiraban inmediatamente el aire del casco, creando un vacío parcial que causaba una gran incomodidad cuando el barco se despresurizaba. . Otro aspecto desagradable de un submarino haciendo schnorkel era la ráfaga de aire helado cargado de sal que aullaba a través del barco. También estaba la incómoda sensación, mientras estaba sumergido, de que la parte superior del tubo de schnorkel, con su estela reveladora, era visible sobre el mar, invitando al ataque de aviones cuyo radar de 3 cm podía detectar incluso ese pequeño objetivo. Pero el schnorkel permitió que un bote sumergido viajara más o menos indefinidamente bajo el agua a una velocidad mucho más alta que la posible con sus motores eléctricos. Todos los submarinos de nueva construcción y muchos de los existentes estaban equipados con schnorkels y se utilizaron ampliamente al cruzar el Golfo de Vizcaya. Pero el schnorkel permitió que un bote sumergido viajara más o menos indefinidamente bajo el agua a una velocidad mucho más alta que la posible con sus motores eléctricos. Todos los submarinos de nueva construcción y muchos de los existentes estaban equipados con schnorkels y se utilizaron ampliamente al cruzar el Golfo de Vizcaya. Pero el schnorkel permitió que un bote sumergido viajara más o menos indefinidamente bajo el agua a una velocidad mucho más alta que la posible con sus motores eléctricos. Todos los submarinos de nueva construcción y muchos de los existentes estaban equipados con schnorkels y se utilizaron ampliamente al cruzar el Golfo de Vizcaya.

Por muy útil que fuera el schnorkel, seguía siendo un vínculo físico con la superficie: los barcos que estaban equipados con él seguían siendo sumergibles. Pero fue un paso hacia los verdaderos submarinos que ahora se estaban construyendo en los astilleros alemanes. Estos fueron los revolucionarios barcos 'Walter' Tipo XVII. La principal característica de esta clase era su altísima velocidad bajo el agua de veinticinco nudos. Esto se logró mediante un sistema de "circuito cerrado", es decir, era independiente del oxígeno externo y, por lo tanto, no necesitaba schnorkel. El principal motor propulsor era una turbina Walter, impulsada por gases creados por la descomposición de un combustible concentrado de peróxido de hidrógeno llamado 'Ingolin' o 'Perhydrol'. Desafortunadamente, este combustible no solo era difícil y muy costoso de fabricar, sino que también era muy inestable y peligroso.

Ninguno de los XVII entró en funcionamiento, aunque uno de ellos, el U1407, que fue hundido en Cuxhaven al final de la guerra, fue rescatado y pasó a la Royal Navy como HMS Meteorite. Se utilizó para evaluar el sistema Walter durante cuatro años, pero se desechó en 1950 porque los británicos lo consideraron "altamente peligroso". Si la Armada alemana hubiera tenido tiempo de desarrollar los barcos Walter, podrían haber tenido un gran éxito; independientemente del aire exterior, podrían haber permanecido sumergidos por un período indefinido.

Es improbable que los barcos Walter se hayan desarrollado a tiempo para afectar el resultado de la batalla del Atlántico, pero otro diseño, el Tipo XXI, considerado seriamente por primera vez en 1943, bien podría haberlo hecho si se hubiera puesto en producción antes. El Tipo XXI era conocido como el 'electrosubmarino' y tenía una capacidad de batería mucho mayor, lo que le otorgaba una alta velocidad bajo el agua de dieciséis nudos. Estos grandes submarinos de 1.800 toneladas, muy bien diseñados, tenían un alcance de 11.000 millas y llevaban veintitrés torpedos de serie. También hubo una versión costera más pequeña, la XXIII, que desplazaba 256 toneladas y tenía una tripulación pequeña de 14 hombres.

Los submarinos XXI fueron diseñados para la producción en masa, siendo completamente soldados y prefabricados extensamente en ocho ensamblajes principales, gran parte de la construcción realizada por mano de obra semicalificada. Si hubiera sido posible producir el Tipo XXI en cantidades suficientes, bien podrían haber prolongado la ofensiva de submarinos; Pero no iba a ser. Los materiales, la mano de obra y la comunicación de suministro se vieron cada vez más afectados por los bombardeos aliados "las 24 horas"; muchos submarinos Tipo XXI fueron bombardeados en construcción en los astilleros. Incluso si los programas de construcción planificados de 634 submarinos hubieran podido completarse, los 62.000 tripulantes capacitados que habrían requerido no existían. Desde finales de 1944 en adelante, el ejército alemán tuvo prioridad sobre todo lo demás. Otro factor que rara vez se ha mencionado fue la extensa minería de la RAF en el Báltico,