Mostrando entradas con la etiqueta AIPS. Mostrar todas las entradas
Mostrando entradas con la etiqueta AIPS. Mostrar todas las entradas

lunes, 15 de septiembre de 2025

SSK: Tipo S80 Plus clase Isaac Peral

 

Submarinos de la Armada Española del Tipo S-80 Plus "Isaac Peral"


Emblema del S-81 Isaac Peral


El inicio de la construcción de submarinos en España se remonta a 1859, cuando se creó en Barcelona el submarino “Ictíneo I” según el diseño del diseñador aficionado Narciso Monturiol y Estarrol, que ya contaba con las características principales de un submarino clásico.




"Ictíneo I"

El siguiente paso del inventor fue construir un submarino más grande y avanzado, el Ictíneo II (1864), con capacidad para 20 personas y equipado con un motor de vapor. Este barco probablemente pueda considerarse el primer submarino con un motor de vapor de vapor. El calor necesario para producir vapor se liberaba mediante una reacción química entre el zinc, el dióxido de manganeso y el cloruro de calcio. Un subproducto de la reacción era el oxígeno, que servía de respiración a la tripulación.
El siguiente submarino, el Peral, se construyó entre 1887 y 1889 en el Arsenal de La Carraca según el diseño del teniente de flota español Isaac Peral y Caballero.


Réplica del submarino "Peral" (construido en 1889), Cartagena

Todos los submarinos mencionados eran, de hecho, puramente experimentales y no fueron aceptados en la flota. Los primeros submarinos de combate construidos en España fueron seis buques Holland de la clase F-105. Estos submarinos, clasificados como tipo "B", fueron construidos por el astillero de la Sociedad Española de Construcciones Navales (SECN) en Cartagena entre 1917 y 1926.


Submarino tipo "B"

Les siguieron las lanchas tipo C (6 unidades, SECN, 1928-1929) y las lanchas tipo D (serie 20), 3 unidades, 1947-1954, que resultaron ser un fracaso rotundo y se utilizaron principalmente como lanchas de entrenamiento. La construcción prevista de las lanchas tipo G (basadas en el diseño del submarino alemán VIIC) quedó en el papel.


Submarino tipo C


Submarino tipo "D"

Los fracasos en la construcción de los submarinos tipo "D" y "G" obligaron a la cúpula de la Armada Española a buscar maneras de crear submarinos económicos y fáciles de construir en astilleros nacionales. Se decidió recurrir a la experiencia de diseñadores alemanes, algunos de los cuales se habían trasladado a España, en la creación de submarinos ultrapequeños durante la Segunda Guerra Mundial.

Así fue como se construyeron los submarinos enanos Foca II-b (Serie 40), dos unidades, entre 1963 y 1964, y Tiburón-IIIB (Serie 50), dos unidades, en 1964, en el astillero de la Empresa Nacional Bazán de Cartagena.


Submarinos enanos del tipo Foca II-b


Submarino enano clase Tiburón IIIB

En 1964, se aprobó otro ambicioso plan de modernización de la flota española, que incluía, en particular, la construcción de ocho submarinos oceánicos. Según este plan, el astillero de la Empresa Nacional Bazán construiría submarinos del tipo «Daphné» («Delfín», Serie 60 según la clasificación española) con licencia francesa. El 16 de julio del año siguiente, se firmó un acuerdo con la Armada Francesa para la asistencia técnica en la construcción de estos submarinos.


Submarino tipo Delfín

Entre 1973 y 1975, entraron en servicio cuatro submarinos de este tipo, con un porcentaje de componentes y equipos de producción nacional del 60 al 70 %. Entre 1983 y 1986, entraron en servicio en la Armada Española cuatro submarinos más, construidos según un diseño francés más avanzado (el tipo "Agosta"), del tipo "Galerna" (Serie 70).


Submarino tipo Galerna

A principios de la década de 1990, la oficina de diseño del gigante francés de la construcción naval DCNS (posteriormente DCNS) comenzó a diseñar nuevos submarinos no nucleares del tipo Scorpene, destinados a la exportación. A los franceses pronto se les unió la empresa española de construcción naval Izar (posteriormente Navantia).


submarino de clase Scorpene

Se desarrollaron varias modificaciones del Scorpène, incluyendo una con un submarino nuclear francés tipo MESMA. El diseño aprovechó ampliamente la experiencia adquirida en el diseño de submarinos nucleares franceses, en particular la forma del casco.

La construcción de los submarinos involucró a las empresas DCN-DCNS de Cherburgo, Tolón, Brest y Lorient, y al astillero Izar-Navantia de Cartagena. El trabajo se dividió entre Francia y España en una proporción aproximada de tres a dos, fabricándose todas las secciones del casco de presión únicamente en Cherburgo.

En 2003, el gobierno español encargó cuatro submarinos de la clase Scorpène por un coste total de 1.756 millones de euros, pero este pedido fue cancelado pronto para dar paso a la construcción de la misma cantidad de submarinos de la clase S-80 de diseño español.

Submarinos tipo S-80


A finales de 1997, por decisión del Estado Mayor de las Fuerzas Armadas, en España se inició el desarrollo de un nuevo submarino nacional, que posteriormente recibiría el nombre de S-80. Incluso en la fase de diseño, Izar-Navantia intentó encontrar compradores extranjeros para el futuro submarino. Turquía, India, Noruega, Singapur y Australia mostraron cierto interés.

Dado que España participaba entonces en el proyecto conjunto Scorpène con Francia, surgieron serias fricciones entre Navantia y DCNS en julio de 2005.

Los franceses acusaron a sus socios españoles de copiar ilegalmente la tecnología del Scorpène al crear el S-80. Además, la elección por parte de España del sistema de información y control de combate para el submarino en diseño, fabricado por la empresa estadounidense Lockheed Martin, en lugar de la alternativa francesa, influyó en el conflicto. Los españoles consideraron el proyecto Scorpène propiedad intelectual conjunta y, a su vez, acusaron a DCNS de promocionarlo en el mercado armamentístico mundial como un proyecto puramente francés. Consideraron el proyecto S-80 como un desarrollo propio, alegando diferencias fundamentales en dimensiones, equipamiento electrónico y tipo de planta motriz. El caso llegó a los tribunales, pero finalmente ambas partes retiraron sus demandas ante el tribunal de arbitraje de París.

Al diseñar un buque tan complejo sin una sólida experiencia en este ámbito, los especialistas españoles se enfrentaron a numerosos problemas, lo que les obligó a desarrollar sus propios métodos de diseño, incluyendo software, como el sistema FORAN. Se utilizaron métodos informáticos para diseñar la ubicación de mecanismos, equipos, tuberías y cableado dentro del casco. Las empresas españolas crearon una serie de nuevos sistemas electrónicos y equipos nacionales, lo que les permitió minimizar sus suministros extranjeros. En total, el 12,5% de los componentes del buque se suministrarían desde Estados Unidos y el 87,5% restante se produciría en España y otros países europeos.

Un grave problema para Izar-Navantia fue la producción y soldadura de secciones del casco de presión de acero 80 HLES. La construcción de la parte cilíndrica del casco de presión estaba dominada, pero para la producción de sus extremos hemisféricos fue necesario recurrir al astillero británico BAE Systems Submarine Solutions, ubicado en Barrow-in-Furness. En el futuro, se suponía que este problema se resolvería con recursos propios mediante la adquisición del equipo necesario y la formación de especialistas.

En 2004, el Ministerio de Defensa español adjudicó a la constructora naval estatal Izar Construcciones Navales SA (posteriormente Navantia) un contrato para la construcción de cuatro lanchas de la clase S-80, comenzando la construcción de la lancha principal al año siguiente. La entrada en servicio de las lanchas estaba prevista entre finales de 2013 y principios de 2016.

Estos plazos se pospusieron repetidamente por razones técnicas y financieras. En 2013-2014, apareció información en los medios sobre un grave problema que surgió en una etapa tardía de la construcción de los nuevos submarinos. Se trataba de una grave violación de la llamada "disciplina de peso". El peso de los submarinos superaba el diseño en 60-100 toneladas, lo que imposibilitaba el proceso seguro de inmersión y ascenso a la superficie. El problema se solucionó alargando el casco en casi 10 metros, con el correspondiente aumento del desplazamiento, lo que retrasó considerablemente la entrada en servicio de los submarinos. El diseño modificado de los submarinos recibió el nombre de S-80 Plus.

El 3 de enero de 2012, los submarinos en construcción recibieron los nombres tradicionales de la Armada Española: Isaac Peral (S-81), Narciso Monturiol (S-82), Cosme García (S-83) en honor a los inventores de los submarinos y Mateo García de los Reyes (S-84) en honor al primer comandante de las fuerzas submarinas de la Armada.

El 22 de abril de 2021, el submarino S-81 Isaac Peral fue botado en presencia de la Familia Real. Su madrina fue la Princesa Leonor de Asturias, de 17 años. Las pruebas de mar del submarino comenzaron el 27 de mayo y entró en servicio el 30 de noviembre de 2023. La transferencia de los submarinos restantes de la serie a la flota debe completarse en 2030.

Principales características de rendimiento del submarino S-80 Plus:

Desplazamiento en superficie, t — 2695
Desplazamiento sumergido, t — 2965
Longitud máxima, m - 80,81
Manga es la más grande, m - 11,68
Calado, m - 6,77
Armamento:
6 NTA 533 mm
18 torpedos o misiles
o 36 min
Generadores diésel - 3 x 1200 kW
Motor eléctrico de remo - 1 x 3500 kW
VNEU - 1 x 300 kW
Número de hélices - 1
Velocidad en superficie, nudos - 12
Velocidad bajo el agua, nudos - 20,5
Velocidad bajo el agua bajo VNEU (AIP), nudos - 4
Autonomía de crucero, millas:
bajo snorkel - 7500 (6 nudos)
bajo el agua — ?
Bajo el agua bajo AIP - más de 1900 (4 nudos)
Profundidad de buceo, m — 460
Autonomía, días — 50–60
La tripulación está formada por 53 personas (incluidas 7 mujeres): comandante, 9 oficiales, 21 suboficiales y 23 marineros.

Diseño de viviendas

Los submarinos del tipo S-80 son monocasco. El robusto casco cilíndrico con extremos esféricos y estructura interna está fabricado en acero 80 HLES. El casco ligero, fabricado en acero S355NL y fibra de vidrio de alta resistencia, se ubica únicamente en los extremos de proa y popa. Todos los tanques de lastre principales se ubican en el casco ligero. El robusto casco consta de cinco secciones (numeradas de popa a proa). Entre la segunda y la tercera sección se encuentra una ataguía robusta que divide el barco en dos compartimentos estancos.

La ataguía puede servir como compartimento de refugio para la tripulación, y también cuenta con una cámara de esclusas para la salida de los nadadores de combate o de la tripulación de un barco hundido mediante la salida a la superficie. Un vehículo de rescate submarino o un vehículo para el transporte de nadadores de combate se puede acoplar a la escotilla superior de la cámara mediante una plataforma de brazola.

El empenaje de popa es cruciforme, mientras que el timón vertical inferior con estabilizador es más corto que el superior, lo que permite que la embarcación se mantenga en tierra. Los timones horizontales delanteros se ubican en la cerca de la timonera. Esta cerca contiene dispositivos retráctiles para siete sistemas: un esnórquel, un periscopio de comandante (también llamado periscopio de ataque), un mástil electroóptico, un mástil de radar, un mástil para sistemas de guerra electrónica, identificación automática (AIS) y reconocimiento de aliados, y dos mástiles para sistemas de radiocomunicación. Todos estos dispositivos están alojados en módulos de mástil universales UMM (Mástil Modular Universal), fabricados por la empresa italiana Calzoni Srl, perteneciente a la empresa estadounidense Kollmorgen Electro-Optical. Se utilizan módulos de mástil similares en los submarinos estadounidenses del tipo Virginia. La mayoría de los dispositivos retráctiles están diseñados para ser impermeables al casco presurizado.


Disposición general del submarino S-80 Plus "Isaac Peral".

Se presta especial atención a la reducción de los campos físicos del barco (acústicos, magnéticos, etc.), utilizando métodos ya probados en los Scorpenes.

Los cómodos camarotes, en comparación con la mayoría de los submarinos, permiten una tripulación mixta (hombres y mujeres). El comandante tiene un camarote independiente, los oficiales se alojan en tres camarotes de tres literas y el resto de los submarinistas en camarotes de seis literas con literas de tres niveles. Todos los miembros de la tripulación disponen de literas independientes. Hay un camarote de oficiales y dos comedores para marineros y suboficiales.


Cabina del comandante


Cabina del oficial

PowerPoint


De particular interés es el sistema de propulsión de los nuevos submarinos españoles, principalmente el AIP. Incluye:

  • tres generadores diésel con una capacidad de 1200 kW cada uno, equipados con motores diésel MTU-Navantia 16V 369 SE-84L-GB31L, ubicados en el segundo compartimento del casco de presión a popa del cofferdam;
  • un motor de propulsión síncrono con imanes permanentes y una potencia de 3500 kW, fabricado por la empresa española Cantarey Reinosa (Grupo Gamesa), ubicado en el primer compartimento del casco de presión;
  • dos grupos de baterías de iones de litio (180 elementos por grupo) ubicados en los compartimentos segundo y quinto, con un peso total de 240 toneladas, fabricados en España por Tudor bajo licencia de Exide Technologies;
  • sistema AIP BEST (Bio-Ethanol Stealth Technology) – el tercer compartimento – con una capacidad de 300 kW desarrollado por las empresas españolas Hynergreen y Navantia;
  • hélice de seis palas de gran diámetro.


Disposición de los elementos de la planta de propulsión del submarino tipo S-80 Plus “Isaac Peral”


Instalación de generadores diésel en la vivienda S-81 Isaac Peral


Compartimento del generador diésel


Instalación de un motor eléctrico de propulsión en un barco del tipo S-80 en construcción

En la fase inicial del diseño del S-80, el desarrollo del AIP se asignó a Greencell. A principios de 2003, Hynergreen Technologies SA se incorporó, y ambas empresas formaron el Grupo Abengoa. Este grupo trabajó en la tecnología de producción de hidrógeno y en la creación de pilas de combustible. La empresa estadounidense UDC Power (proveedor de pilas de combustible para naves espaciales de la NASA) y Navantia también participaron en la creación de las pilas de combustible.


VNEU BEST en el banco de pruebas

La planta motriz independiente del aire desarrollada para el S-80 consta de los siguientes elementos principales:

• Reformador de bioetanol (desarrollador: Hynergreen-Abengoa). Esta unidad se utiliza para obtener hidrógeno de alta pureza a partir de bioetanol, más conocido como "alcohol etílico". Esto elimina la necesidad de almacenar hidrógeno licuado o gaseoso potencialmente peligroso a bordo y simplifica el problema de reponer sus reservas;
• Sistema de almacenamiento y bombeo de bioetanol (Hynergreen, Navantia);
• Sistema de almacenamiento y suministro de hidrógeno (Air Liquide, Navantia);
• Sistema de almacenamiento y suministro de oxígeno (Air Liquide, Navantia). El oxígeno se almacena en forma líquida en un tanque criogénico especial;
• Sistema para compensar el peso del hidrógeno y el bioetanol consumidos (Hynergreen, Navantia);
• Sistema de control de potencia AIP (Hynergreen);
• Sistemas de control, monitorización y protección AIP (Hynergreen, Navantia);
• Sistema SECO2 para la evacuación sin dejar rastros por la borda de una mezcla de dióxido de carbono y agua dulce, subproductos formados durante la producción de hidrógeno a partir de bioetanol (desarrollado por Fuente Alamo y Navantia);
• Un sistema de pila de combustible que sirve para la conversión directa de energía química en energía eléctrica. Desarrollado y fabricado por la empresa estadounidense UTC Power, basado en tecnología PEM (membrana de intercambio de protones).

La energía eléctrica producida por el AIP permite impulsar el motor de propulsión o cargar las baterías sin acceso al aire atmosférico y multiplica por varias la autonomía de crucero submarino por encima de la de una central eléctrica diésel convencional.

Los retrasos en el desarrollo de este sistema de propulsión independiente del aire (AIP) hicieron que no se instalara hasta julio de 2021 en el tercer buque de la serie Cosme García (S-83). Está previsto que los dos primeros buques tengan instalado el AIP durante las reparaciones programadas.

armamento radioelectrónico


El cerebro de los nuevos submarinos españoles es el sistema de información y control de combate SUBICS (Sistema Integrado de Combate Submarino), desarrollado por la empresa estadounidense Lockheed Martin Underwater Systems con la participación de Navantia. Se trata de una versión simplificada del sistema empleado en los submarinos estadounidenses Virginia, Seawolf y Los Ángeles. La integración de SUBICS con el resto de los sistemas del buque estuvo a cargo de Navantia y FABA Sistemas.

SUBICS es un sistema de arquitectura abierta con un amplio uso de hardware y software comercial, lo que facilita futuras actualizaciones y reduce los costes operativos. Conforma una red única para todo el buque, que incluye todos los sistemas C4I (Mando, Control, Comunicaciones, Informática e Inteligencia) y de armas.







Puesto central

El sistema recopila y procesa datos recibidos de sistemas hidroacústicos, electroópticos, radares, sistemas electrónicos de reconocimiento y contramedidas, y sobre esta base forma una imagen única de la situación táctica (C2), la analiza y emite recomendaciones a los operadores C4I sobre cuestiones de navegación, aplicación de armas , etc.

El sistema está organizado de tal manera que el buque puede ser controlado desde siete (según otras fuentes, doce) consolas de operador multifuncionales prácticamente idénticas del tipo CONAM SUB de Sainsel (una filial de Navantia) con software de Navantia y sus filiales FABA Sistemas y SAES y un monitor de formato ancho, ubicado en el puesto central. Cada una de las consolas tiene dos monitores de cristal líquido y un panel de control, desde el cual es posible controlar varios sistemas del barco, tales como sistemas hidroacústicos, periscopios, radares, realizar disparos de torpedos y misiles, colocar minas, recargar tubos de torpedos, etc. También existe la posibilidad de interferir el funcionamiento de las estaciones hidroacústicas enemigas y los sistemas de guía de torpedos antisubmarinos (ACM - Subsistemas de contramedidas acústicas) con la ayuda de 20 lanzadores fabricados por Weir Strachan & Henshaw Ltd. Además, las consolas se pueden utilizar como simuladores para los miembros de la tripulación.

El sistema de vigilancia submarina consta de seis sistemas hidroacústicos y su software producido por las empresas estadounidenses Lockheed Martin y EDO Corporation y las españolas SAES e Indra Sistemas:

• sonar con una antena cilíndrica de proa CAS (Cylindrical Array Sonar): la principal estación hidroacústica pasiva cuando se navega en una posición submarina, que proporciona detección de señales en los planos horizontal y vertical;
• Sistema FAS/PRS, que utiliza un sonar con antenas de orientación lateral ubicadas a ambos lados del submarino FAS (Flank Array Sonar) y un sonar PRS (Passive Ranging Sonar) con una antena remolcada extendida pasiva DTAS (Digital Towed Array Sonar), que permite determinar la distancia al objetivo cuando opera en modo pasivo;
• Sistema de reconocimiento de señales acústicas IAS (Interception Acoustic Sonar), diseñado para detectar, identificar y localizar la fuente de las señales;
• Navegación activa GAS MODS (Mine and Obstacle Detection Sonar), utilizado para detectar obstáculos submarinos y minas;
• GAS para la monitorización del ruido y las vibraciones propias. Mediante 30 sensores ubicados en diversas partes del casco, monitoriza y registra el ruido propio y determina los parámetros óptimos de los sistemas del buque en términos de ruido.

Las antenas CAS y MODS, ubicadas en la proa, están cubiertas por un carenado común de fibra de vidrio de 80 m² con dos ventanas acústicas para el paso sin obstáculos de las ondas acústicas. La antena remolcada se instala y recupera mediante el sistema automatizado TAHS (Sistema de Manejo de Conjuntos Remolcados) de la empresa británica QinetiQ y es monitorizada por cámaras de televisión. En caso de emergencia, la antena puede desconectarse.

Para proporcionar comunicación sonora submarina en modo telefónico con buques de superficie, submarinos y buzos, se utilizarán dos instalaciones: la principal y la de emergencia.

El radar Aries-S, denominado "silencioso", de la empresa española Indra, y el equipo de vigilancia óptica, compuesto por un periscopio de combate y un mástil electroóptico, combinados en un único sistema de vigilancia ISIS (Sistema Integrado de Imágenes Submarinas), se utilizarán para monitorizar la situación en superficie. El periscopio de combate Modelo 210A de Calzoni (parte de la empresa estadounidense Kollmorgen Electro-Optical) es del tipo habitual y atraviesa el casco presurizado. Además del canal óptico, está equipado con una cámara de televisión a color con amplificación de imagen y una cámara termográfica Indra MVT 640. La observación puede realizarse a través de un ocular óptico o un monitor remoto. El mástil electroóptico Percosub II (modelo 210OS) de Calzoni, que no penetra el casco presurizado, está equipado con una cámara infrarroja, una cámara de televisión a color diurna de alta resolución, una cámara de televisión para condiciones de poca luz, un telémetro láser y un sistema de señalización infrarroja. Este mástil también albergará antenas GPS, antenas de reconocimiento electrónico y equipos de radiocomunicación VHF.

Otro medio de vigilancia pasiva será el sistema de inteligencia electrónica Pegaso de Indra Sistemas, montado en un mástil retráctil independiente, para analizar señales de radar y radio. El mástil también cuenta con antenas GPS integradas (las antenas de este sistema están instaladas en varios mástiles) y un transpondedor para el sistema de identificación de "amigo o enemigo".

Los datos de navegación se recopilan y procesan mediante el subsistema DIANA, que utiliza el servidor de navegación ARES S-80. DIANA recibe información del radar, dos sistemas de navegación inercial, dos sistemas GPS, un registro electromagnético y una ecosonda. La ecosonda, equipada con dos emisores de baja frecuencia y un batitermógrafo, permite determinar no solo la profundidad bajo la quilla, sino también la distancia a la superficie del agua, la velocidad de propagación del sonido en el agua, su densidad y salinidad.

Las embarcaciones tipo S-80 estarán equipadas con un sistema de comunicación integrado ICCS-5 (Sistema de Control de Comunicación Integrado), que incluye: un sistema de radiocomunicación de la empresa alemana Rohde & Schwarz, que también incluye un sistema de transmisión de datos Link 11/22 con un terminal de la empresa española Technobit, antenas de radio de diversos tipos, un sistema de comunicación sonora subacuática, dispositivos de protección criptográfica, etc. La radiocomunicación a profundidad de periscopio se realiza mediante un mástil multifuncional especial, que incluye un sistema de antena para dispositivos VHF/UHF/IFF/IRIDIUM y GPS. En superficie, también se utilizará una antena de marco para recibir señales en ondas largas y ultralargas (LF y VLF). Un mástil especial alberga una antena para el sistema de comunicación por satélite SHF SATCOM. Al navegar a una profundidad superior a la del periscopio, se utilizarán boyas de comunicación emergentes, conectadas por cable a la embarcación, que permiten la radiocomunicación en los rangos HF/LF/VLF.

Armas de torpedos, misiles y minas

Los barcos están armados con seis tubos lanzatorpedos de proa de 533 mm, diseñados para disparar torpedos, misiles o sembrar minas. El armamento se dispara desde los tubos mediante dos turbobombas neumáticas de Weir Strachan & Henshaw Ltd. (una filial de la empresa británica Babcock International Group). La carga de munición puede consistir en 18 torpedos o misiles o 36 minas (según otras fuentes, 32).


Submarino S-81 Isaac Peral en construcción. Se ven los tubos lanzatorpedos.

La empresa mencionada suministra al S-80 un completo WHLS (Sistema de Manejo y Lanzamiento de Armas), similar al instalado en los submarinos nucleares británicos de la clase Astute. Este sistema semiautomático está diseñado para cargar y descargar munición, transportarla y almacenarla en el interior de la embarcación, recargar los tubos lanzatorpedos (también suministrados por esta empresa) y dispararlos.

Se prevé que el S-80 esté armado con torpedos alemanes Atlas Elektronik DM2A4 Seehecht (Seahake mod. 4). En noviembre de 2005, el Ministerio de Defensa español y Atlas Elektronik firmaron un contrato por 75,2 millones de euros para el suministro de torpedos de este tipo entre 2005 y 2014. También se pueden utilizar otros tipos de torpedos, como el Mk 48, el Blackshark, el Spearfish o el TP2000.

Principales características de rendimiento del torpedo Atlas Elektronik DM2A4 Seehecht.

:

FabricanteSTN Atlas Elektronik, Alemania
Año de inicio de producción2008
PropósitoMultipropósito
Calibre, mm533
Longitud, m6,6
Peso, kg1370
Peso del explosivo, kg260
Alcance, kmMás de 50
Velocidad, nudos50
Profundidad máxima de disparo, mMás de 350
Sistema de guiadoPor cable y autoguiado acústico


Además de torpedos, los barcos pueden transportar misiles y minas. Estos pueden ser misiles antibuque UGM-84 Sub-Harpoon Bloque II de lanzamiento submarino de la empresa estadounidense Boeing Integrated Defense Systems, misiles noruegos NSM-SL o misiles SM-39 Exocet de la empresa francesa. También es posible equiparlos con misiles de crucero UGM-109 Tomahawk para alcanzar objetivos terrestres (Raytheon Systems, EE. UU.) o misiles SCALP Naval europeos (MBDA). En lugar de torpedos, los barcos pueden transportar minas de fondo MINEA de la empresa española SAES.

Principales características de rendimiento de las armas antiminas.

:

FabricanteSAES, España
NombreMINEA
TipoDe fondo, no de contacto
Diámetro, mm533
Longitud, mm2600
Peso total, kg900
Peso de explosivo, kgMás de 600
Profundidad de colocación, m5–300
Sistema de controlCanal acústico


Se espera que a los nuevos submarinos se les asignen las siguientes tareas:

• atacar objetivos costeros con misiles de crucero;
• llevar a cabo una guerra antisubmarina utilizando torpedos y armas de minas;
• atacar buques de superficie y buques de transporte utilizando misiles antibuque, torpedos y minas;
• establecer campos de minas defensivos y ofensivos;
• garantizar las actividades de fuerzas especiales;
• realizar reconocimiento, incluida inteligencia electrónica;
• proteger las fuerzas de desembarco en el área de desembarco.




El S-81 Isaac Peral siendo sacado del muelle


NombreNo.ConstructorFirma del contratoColocación de quillaBotaduraEntrada en servicio
Isaac PeralS-81

13.12.200707.05.202130.11.2023
Narciso MonturiolS-82Navantia, Cartagena24.03.200419.02.2009Septiembre 2026
Cosme GarcíaS-83

21.01.2010Diciembre 2028
Mateo García de los ReyesS-84

2011Enero 2030






“Isaac Peral” en pruebas de mar

Los militares y constructores navales españoles destacan las altas cualidades combativas y operativas de los submarinos S-80 Plus y los consideran los mejores submarinos no nucleares del mundo.

Bibliografía

1. Submarinos Taras AE de la Segunda Guerra Mundial 1939-1945. Minsk, 2004
2. Submarinos enanos Taras AE 1914-2004. Minsk, 2004
3. Aleksandrov Yu.I., Gusev AN Buques de guerra del mundo a principios de los siglos XX-XXI. Parte I. Submarinos. San Petersburgo, 2000
4. Jane's Fighting Ships, 1940, 1981-1982, 2004-2005
5. Guía de reconocimiento de Jane's Warships. Londres, 2002
6. Fuerza Naval Especial N.º 4. Submarinos
7. Fuerza Naval Especial N.º 9. Submarinos
8. Revista General de Marina. Octubre de 1988
9. Revista General de Marina. Agosto-Septiembre 1988
10. Dionicio García Florez. Buques de la guerra civil española. Submarinos. Madrid, 2003
11. Buques de Combate del Mundo. Una enciclopedia ilustrada del poder marítimo moderno. Londres,
12. Fuerzas Militares del Mundo. N° 117/2012
13. Nowa Technika Wojskowa. No 6/2011
14. Defensa. Núm. 485, septiembre 2018
15. Defensa. Núm. 511, noviembre de 2020
16. Fuerzas Militares, Núm. 511, marzo 2025
17. www.hisutton.com
18. Wikipedia
19. https://armada.defensa.gob.es/



martes, 28 de enero de 2025

Propulsión: ¿Cómo quedaría el S-80 con baterías de litio?

Baterías de litio y rendimiento




El tema de las baterías de litio en submarinos ha dado que hablar estos días, así que he recurrido a un experto para que nos solucione las dudas. ¿Quieres saber cómo quedaría un S80 con baterías de litio? (tengo los números)



En 2023, el TN Bernal @jose_bernals publicaba en la RGM un artículo titulado «Litio o plomo». Recientemente, lo ha ampliado con datos de última hora que me ha autorizado a compartir con vosotros.
https://publicaciones.defensa.gob.es/media/download

El motivo de mayor exposición en los submarinos convencionales es la recarga de las baterías. A menos necesidad de recarga, y más rápida esta, menos exposición. Esta es una de las razones del nacimiento del AIP.



Las limitaciones del AIP incluyen la velocidad (unos 4 kts) y el almacenamiento de combustibles a veces peligrosos.




El caso de estudio son los submarinos japoneses Soryu. Los primeros 10 de la serie tienen baterías de plomo y 4 motores AIP Stirling, y los 2 últimos, solo baterías de litio.



Esto demuestra, primero, que es viable. Los Soryu no han necesitado ninguna modificación del casco resistente, el sistema de combate, ni a las armas. Los cambios solo afectan a la acumulación y generación eléctrica.




Las baterías de litio tienen una densidad energética un 50 % mayor y tiempos de carga más cortos. También requieren menos mantenimientos y pesan menos, aunque son ocho veces más caras.



Comparativa
Soryu serie 1:
- Baterías Pb: 22 kAh
- AIP: 300 Ah
- Generadores diésel: 2,6 kAh
Soryu serie 2:
- Baterías Li: 55 kAh
- Generadores diésel: 2,6 kAh



Dejémonos de voltios y veamos datos operativos. Suponiendo 5 kts para una demanda de 275 kW.
Soryu serie 1:
- 48h (sin AIP) descarga hasta 40 % batería (remanente de seguridad).
- Con AIP 384h (16 días) descarga hasta 40 % batería.
Soryu serie 2: la misma descarga (13200 A, el 60 % de los 22 kAh) solo descarga el 24 % de la batería. Podríamos hacer 2,5 veces esa descarga hasta quedarnos al 40 %, por tanto, 5 días.



Fijémonos en que, quitando los ¡4! motores Stirling y sustituyéndolos por baterías no se consigue ni triplicar la capacidad de almacenamiento. Es decir, hay un aumento muy significativo, pero solo sustituir Pb por Li no es la panacea… Parece que los japoneses pierden autonomía.



Ahora bien, ¿y si dejamos el AIP y cambiamos las baterías Pb por Li… por ejemplo en el S80? ¿Cuánta autonomía nos daría a nosotros?



Pues el autor nos dicen que el tiempo de descarga sin AIP se vería aumentado en más de un 50 % (coincide, aprox., con el aumento de densidad energética). El tiempo de recarga se reduciría en un 30 %.



Si metemos el AIP en la ecuación, esos números bajan mucho. Si el S80 tiene la misma relación con/sin AIP (2 días vs. 16 días) en plomo, con AIP + litio pasaría a 3 días vs. 17 días. En el caso de autonomía con AIP el aumento es solo del 6 % (16 vs. 17 días).



¿Es poco? Bueno, cualquier mejora es buena, pero sobre todo, la ventaja está en la velocidad de carga, que disminuye el tiempo de exposición.



Finalmente, sobre la pregunta de si es técnicamente viable, el autor nos cuenta que Navantia se ha reunido con Hanwha Aerospace, la empresa coreana que está fabricando los KSS-III. (🖼️ @CovertShores)




El cambio es viable. Supone una adaptación de la instalación eléctrica (que ya está planteada para el P-75 propuesto para India) y unos ajustes de pesos añadiendo bloques de plomo en el espacio entre cuadernas.



Espero que os haya gustado y el mérito es todo del gran publicaciones.defensa.gob.es/media/download

martes, 29 de octubre de 2024

Clase Scorpene: Aproximación a la tecnología LIB y AIP

Una mirada más cercana a la tecnología submarina del LIB y AIP



Submarino clase Scorpene (imagen: GWMJ)

La tecnología de propulsión independiente del aire (AIP) con celdas de combustible y las baterías de iones de litio (LIB) representan un avance significativo en la propulsión de submarinos, ofreciendo beneficios operativos sustanciales, aunque también plantean desafíos únicos que requieren una gestión cuidadosa. Actualmente, un número creciente de armadas a nivel mundial implementa estas tecnologías debido a su rendimiento y eficiencia superiores frente a las baterías tradicionales de plomo-ácido. Ambas innovaciones superan las capacidades de los sistemas de propulsión diésel-eléctricos convencionales, y un enfoque híbrido que combina baterías de iones de litio con celdas de combustible optimiza el rendimiento en numerosas situaciones operativas.

Batería submarina de iones de litio (foto: GWMJ)

A. VENTAJAS DE LAS BATERÍAS DE IONES DE LITIO EN SUBMARINOS
1. Mayor densidad energética y eficiencia
Las baterías de iones de litio proporcionan una densidad de energía significativamente superior, lo que permite una mayor autonomía bajo el agua y tiempos de carga más rápidos. Estas características las hacen especialmente adecuadas para misiones prolongadas y para un redespliegue ágil y eficiente.

2. Mantenimiento reducido y vida útil más larga
En comparación con las baterías de plomo-ácido, las baterías de iones de litio requieren menos mantenimiento y tienen una vida útil más larga, lo que las hace más rentables con el tiempo. 

3. Seguridad y confiabilidad mejoradas
Los avances recientes en la tecnología de iones de litio, como el empleo de fosfato de litio y hierro (LiFePO4), han mejorado significativamente la seguridad de estas baterías. Estas innovaciones mitigan la susceptibilidad al calor y reducen los riesgos de incendio, una consideración crucial para submarinos que operan en entornos confinados y de alta presión.

B. DESAFÍOS EN LA APLICACIÓN DE BATERÍAS DE IONES DE LITIO (LIB)
Aunque las baterías de iones de litio presentan numerosos beneficios, también plantean desafíos importantes, especialmente en términos de seguridad y en la gestión de operaciones y mantenimiento. Avances en ciencia de materiales, como el uso de cerámicas y revestimientos de carbono duro, contribuyen a mitigar estos riesgos. Además, la integración de baterías de iones de litio con tecnologías de propulsión complementarias, como las celdas de combustible, puede potenciar aún más el rendimiento de los submarinos. En conjunto, la transición a baterías de iones de litio representa un avance tecnológico considerable en el diseño de submarinos y promete una mayor capacidad operativa y eficiencia para las armadas modernas.

Aplicación de la tecnología de baterías de iones de litio para submarinos de clase Scorpene Evolved (imagen: Total Energies)

C. COMPARACIÓN DE BATERÍAS DE IONES DE LITIO (LIB) Y BATERÍAS DE PILA DE COMBUSTIBLE AIP PARA SUBMARINOS

1. BATERÍA DE IONES DE LITIO
a. Densidad y eficiencia energética
1). Alta densidad de energía
Las baterías de iones de litio destacan por su alta densidad de energía, generalmente en el rango de 150-200 Wh/kg, superando ampliamente a las baterías tradicionales de plomo-ácido, que ofrecen alrededor de 30-50 Wh/kg. Esta mayor densidad de energía permite a los submarinos almacenar una cantidad considerable de energía en un volumen compacto, lo cual facilita una mayor autonomía bajo el agua y la capacidad de recorrer distancias más largas. La eficiencia energética superior de las baterías de iones de litio proviene de su reacción química, en la cual los iones de litio se desplazan entre el ánodo y el cátodo, almacenando y liberando energía de forma más efectiva que las baterías de plomo-ácido, que dependen de reacciones químicas con plomo y ácido sulfúrico.

2). Carga rápida
Las baterías de iones de litio ofrecen tiempos de carga más rápidos en comparación con las de plomo-ácido, gracias a sus propiedades electroquímicas. La capa densa de electrolito en el ánodo facilita una transferencia rápida de iones de litio, lo que permite una absorción de energía más eficiente. Esta capacidad de carga rápida es esencial para facilitar un redespliegue ágil y mantener altos niveles de preparación operativa.

b. Mantenimiento y ciclo de vida
1). Menor mantenimiento
Las baterías de iones de litio requieren menos mantenimiento, ya que no experimentan sulfatación, un problema común en las baterías de plomo-ácido que causa la formación de cristales de sulfato en las placas, disminuyendo su capacidad y eficiencia. Esto se debe a las reacciones químicas equilibradas de las baterías de iones de litio y a la ausencia de electrolito líquido susceptible a la degradación. Además, las LIB incorporan un sistema de gestión de batería (BMS) que supervisa y gestiona su estado, reduciendo aún más las necesidades de mantenimiento y mejorando su fiabilidad operativa.

2). Vida útil más larga
Las baterías de iones de litio suelen tener una vida útil más prolongada, generalmente entre 10 y 15 años, en comparación con los 5 a 8 años de las baterías de plomo-ácido. Esta longevidad se debe a su capacidad para soportar entre 500 y más de 2000 ciclos de carga y descarga, dependiendo de la química específica utilizada. La durabilidad superior es el resultado de reacciones electroquímicas estables dentro de la batería, junto con la gestión efectiva proporcionada por el sistema de administración de batería (BMS), que optimiza su rendimiento y prolonga su vida operativa.

La resistencia de inmersión sin salir a la superficie por parte de submarinos en la ASEAN, el submarino Scorpene Evolved de la Armada de Indonesia puede sobrevivir durante 50 a 78 días (imagen: Lancercell)

b. Consideraciones de seguridad
Una de las principales preocupaciones de seguridad en las baterías de iones de litio es la fuga térmica, un fenómeno en el cual las celdas se sobrecalientan, desencadenando una reacción en cadena que puede provocar incendios o explosiones. Esta fuga térmica puede ocurrir debido a un cortocircuito interno, sobrecarga o daño físico. Cuando la temperatura dentro de una celda supera un umbral crítico, el electrolito puede inflamarse, causando un rápido incremento de temperatura y presión.

Avances como la química de fosfato de hierro y litio (LiFePO4), conocida por su mayor estabilidad y menor susceptibilidad al sobrecalentamiento, han mejorado significativamente la seguridad. Además, el uso de un sistema de gestión de batería (BMS) avanzado y un sistema de control térmico permite monitorear y regular la temperatura, disminuyendo el riesgo de fuga térmica y mejorando la confiabilidad operativa.

d. Beneficios operativos
Las baterías de iones de litio permiten un funcionamiento significativamente más silencioso del submarino en comparación con los motores diésel convencionales, que generan más ruido debido a sus piezas mecánicas en movimiento. Estas baterías suministran energía eléctrica directa a los sistemas de propulsión y a otros sistemas a bordo, eliminando la necesidad de un motor de combustión interna. Al prescindir de componentes mecánicos ruidosos, como pistones, engranajes y sistemas de escape, se reduce la firma acústica del submarino, mejorando su capacidad de sigilo y aumentando su eficacia en misiones que requieren discreción.

2. TECNOLOGÍA AIP (PROPULCIÓN INDEPENDIENTE DEL AIRE) DE PILA DE COMBUSTIBLE
a. Densidad y eficiencia energética
Las pilas de combustible de hidrógeno generan electricidad mediante una reacción química entre hidrógeno y oxígeno, produciendo únicamente agua y calor como subproductos. En las pilas de combustible de membrana de intercambio de protones (PEM), el proceso comienza en el ánodo, donde las moléculas de hidrógeno se dividen en protones y electrones. Los electrones recorren un circuito externo, generando energía, mientras que los protones atraviesan una membrana para combinarse con el oxígeno en el cátodo y formar agua. Este proceso permite un suministro continuo de energía siempre que haya combustible disponible, eliminando la necesidad de recargar como ocurre con las baterías convencionales.

En un sistema de propulsión independiente del aire (AIP), las pilas de combustible utilizan oxígeno líquido almacenado u otro oxidante para generar electricidad bajo el agua, evitando la necesidad de salir a la superficie o utilizar un snorkel para obtener oxígeno atmosférico. Esto mejora significativamente la capacidad de permanencia sumergida y reduce la firma de detección del submarino, haciendo que sea más difícil de localizar y rastrear en operaciones furtivas.

El concepto de utilizar AIP en submarinos eléctricos puede reducir la tasa de indiscreción/el barco debe salir a la superficie (imagen: GWMJ)

b. Mantenimiento y ciclo de vida

1). Mantenimiento complejo
El mantenimiento de los sistemas de pilas de combustible demanda conocimientos e infraestructura especializados para la manipulación y almacenamiento del hidrógeno, lo cual representa un desafío logístico y financiero. La infraestructura necesaria incluye instalaciones para la producción, compresión, almacenamiento y distribución de hidrógeno. Además, los sistemas de pilas de combustible requieren mantenimiento regular para asegurar el funcionamiento óptimo de componentes clave, como membranas, electrodos y catalizadores. La presencia de fugas o contaminación puede comprometer considerablemente el rendimiento y la seguridad del sistema.

2). Requisitos de formación
El personal de tripulación y mantenimiento necesita una formación extensa y rigurosa para operar de forma segura las pilas de combustible y los sistemas asociados, incluyendo el almacenamiento y la transferencia de hidrógeno. Dado que el hidrógeno es un gas altamente inflamable, el cumplimiento de estrictos protocolos de seguridad es fundamental para prevenir fugas y explosiones. Además, el manejo y mantenimiento de esta tecnología avanzada requiere conocimientos profundos en procesos electroquímicos y en la integración de sistemas para asegurar una operación segura y eficiente.


b. Consideraciones de seguridad

1). Riesgos del almacenamiento de hidrógeno
El almacenamiento y manipulación del hidrógeno conlleva riesgos significativos debido a las características de sus moléculas, que son extremadamente pequeñas y pueden escapar a través de espacios mínimos o sellos, lo que incrementa el riesgo de fugas y explosiones. Esto exige soluciones de almacenamiento robustas, como tanques de alta presión o sistemas criogénicos, para asegurar un confinamiento seguro del hidrógeno. Además, se necesitan materiales y técnicas especializadas para prevenir fugas y asegurar un manejo seguro del gas.

2). Problemas de confiabilidad
Las pilas de combustible pueden presentar problemas de confiabilidad, ya que su rendimiento tiende a degradarse con el tiempo y bajo ciertas condiciones operativas debido a la complejidad de la tecnología y la gestión del combustible. Factores como las impurezas en el combustible, la degradación de las membranas y el envenenamiento de los catalizadores afectan la eficiencia y longevidad de las pilas de combustible. Estos desafíos requieren monitoreo constante y mantenimiento preventivo para mantener un rendimiento estable y confiable.


Capacidad de crucero en inmersión/rango de crucero sumergido (gráfico: GWMJ)

d. Beneficios operativos

1). Aumento de la resistencia
La tecnología Fuel Cell AIP mejora considerablemente la resistencia de los submarinos, permitiendo operaciones prolongadas y encubiertas. Esto es posible porque las pilas de combustible pueden generar electricidad continuamente mientras haya suministro de combustible. Los submarinos equipados con AIP pueden permanecer sumergidos durante semanas o incluso meses, en contraste con los submarinos diésel-eléctricos convencionales, cuya autonomía es de solo unos días. Esta mayor resistencia amplía la flexibilidad operativa y potencia las capacidades de sigilo del submarino.

2). Reducción de la firma acústica
Al igual que las baterías de iones de litio, las pilas de combustible AIP facilitan un funcionamiento silencioso del submarino, reforzando su capacidad de sigilo. La generación de electricidad mediante reacciones químicas en el sistema AIP, que no requiere partes móviles, elimina el ruido asociado a los motores de combustión interna con componentes mecánicos. Esto reduce significativamente la firma acústica del submarino, haciéndolo más difícil de detectar mediante sistemas de sonar.

Submarinos diésel con tecnología AIP vs LIB (gráfico: Estudios de Defensa)

D. CONCLUSIÓN
1. Batería de iones de litio (LIB)
Las baterías de iones de litio ofrecen mayor densidad de energía, tiempos de carga más rápidos y menor mantenimiento, lo que las hace altamente eficientes y rentables para los submarinos modernos. Sin embargo, esto plantea un riesgo de seguridad que debe gestionarse con cuidado.

2. Pila de combustible AIP
AIP proporciona una mayor resistencia operativa e independencia del aire de superficie, lo cual es importante para misiones furtivas y de largo alcance. Dichos equipos requieren un mantenimiento más complejo e infraestructura especializada, lo que puede resultar complicado y costoso desde el punto de vista logístico. 

E. CONSIDERACIONES
1. Necesidades operativas
La elección entre baterías de iones de litio y pilas de combustible depende en gran medida de los requisitos operativos específicos y del perfil de la misión de la flota de submarinos.

2. Costos e infraestructura
Las consideraciones de costo, infraestructura disponible y protocolos de seguridad juegan un papel importante a la hora de determinar la tecnología más adecuada. (Capitán de barco (T) Iqbal)