Mostrando entradas con la etiqueta tecnología naval. Mostrar todas las entradas
Mostrando entradas con la etiqueta tecnología naval. Mostrar todas las entradas

domingo, 22 de junio de 2025

Producción naval: Los materiales compuestos en la construcción de naves

Los materiales compuestos en la construcción naval



Aleksandr Mitrofanov || Revista Militar



¿Qué son los materiales compuestos (composites)?

Se trata de un material compuesto por al menos dos componentes químicamente diferentes e insolubles entre sí, cuya proporción cuantitativa debe ser comparable. Uno de estos componentes es una fase continua (matriz), que puede ser metálica, cerámica, de carbono o polimérica, y el otro es un relleno. Las fibras de carbono o de vidrio suelen actuar como rellenos en los compuestos poliméricos, y el polímero desempeña la función de matriz. Como resultado, se forma un material monolítico prácticamente nuevo, cuyas propiedades difieren cualitativamente de las de cada uno de sus componentes por separado. Ejemplos de estos materiales son el hormigón armado, los plásticos reforzados con fibra de vidrio y fibra de carbono, el caucho, etc.




Estructura de materiales compuestos

La historia de los materiales compuestos se remonta a miles de años atrás. Es muy posible que el primer composite fuera un material de construcción aún muy común en la actualidad: una mezcla de arcilla y paja utilizada para fabricar ladrillos. Alrededor de 3400 años antes de Cristo, en la antigua Mesopotamia, se pegaban listones de madera en diferentes ángulos para crear madera contrachapada.

En las décadas de 1870 y 1890, surgieron las resinas poliméricas sintéticas, que se convertían de líquido a sólido mediante un proceso de polimerización. En 1907, el químico estadounidense Leo Baekeland creó la baquelita (también llamada carbolita), una de las primeras resinas sintéticas. Esta resina era extremadamente frágil, pero Baekeland eliminó este inconveniente combinándola con celulosa, creando así un composite.

En 1936, Carleton Ellis patentó las resinas de poliéster insaturado, que se convirtieron en la opción preferida para la fabricación de composites. A finales de la década de 1930, surgieron otros sistemas poliméricos, como las resinas epoxi.
A finales de la década de 1930, la empresa estadounidense Owens-Illinois desarrolló un proceso para extraer el vidrio en fibras finas y crear tejidos a partir de ellas. La combinación de fibras de vidrio con nuevas resinas sintéticas dio lugar a la creación de compuestos resistentes y ligeros llamados fibra de vidrio.


Fibra de vidrio

Al mismo tiempo, el inventor alemán Max Himmelheber desarrolló una tecnología para producir tableros aglomerados, un material compuesto en láminas fabricado mediante el prensado en caliente de partículas de madera, principalmente virutas, mezcladas con un aglutinante. La primera muestra comercial se fabricó en una fábrica de Bremen en 1941 utilizando aglutinantes fenólicos y virutas de abeto.

El contrachapado de aviación , fabricado con chapa de abedul impregnada con cola de fenol-formaldehído y resina de baquelita, es ampliamente utilizado. En 1935, la URSS creó la "madera delta", que desempeñó un papel importante en la fabricación de aeronaves nacionales durante la Segunda Guerra Mundial. Este compuesto se obtenía mediante el prensado en caliente a alta presión de capas de chapa de abedul impregnadas con resina de fenol-formaldehído o cresol-formaldehído.


Madera contrachapada


contrachapado de aviación


Madera del delta (lignofol)

También se están creando otros tipos de materiales compuestos laminados no metálicos: getinax, plásticos decorativos con capas de papel, cuero artificial, textolita, vidrio multicapa, linóleo y muchos más.

La Segunda Guerra Mundial impulsó el uso generalizado de los materiales compuestos. Para 1945, solo en EE. UU. se producían alrededor de 1600 toneladas de fibra de vidrio al año.

Desde principios de la década de 1950, se han utilizado paneles de nido de abeja (paneles sándwich), lo que permite producir estructuras de alta resistencia con un peso mínimo. Estos paneles están hechos de un relleno celular de nido de abeja de aluminio, materiales compuestos o espuma de plástico, colocado entre dos láminas delgadas de material rígido (metal, etc.), lo que le confiere resistencia a la tracción.


Panel sándwich

En 1961, se patentó la primera fibra de carbono. El uso de esta fibra contribuyó al avance de muchas industrias, como la aeroespacial, la automotriz y la náutica. En 1966, Stephanie Kwolek, química de DuPont, inventó el kevlar, una fibra de para-aramida.


fibra de carbono

Desde principios de la década del 2000, se ha utilizado la nanotecnología. Los nanomateriales se incluyen en fibras y resinas avanzadas utilizadas en nuevos compuestos. El desarrollo de la impresión 3D en la década de 2010 ha hecho posible la creación de cualquier elemento que pueda crearse mediante CAD. Las empresas de compuestos han comenzado a producir materiales de impresión 3D que contienen fibras reforzadas, como fibra de carbono o fibra de vidrio.

Hormigón armado


El primer material compuesto que se utilizó ampliamente en la construcción naval fue el hormigón armado: en 1849 se construyó un barco de hormigón armado en Marsella y, en 1912, un buque autopropulsado con una capacidad de elevación de 250 toneladas en Hamburgo.


Un barco de hormigón armado construido en 1849 en Marsella.

Durante la Primera Guerra Mundial, la escasez de acero y mano de obra cualificada impulsó la construcción de barcos de hormigón. Estos barcos se construyeron en Inglaterra, Estados Unidos, Alemania, Francia, Italia y los países escandinavos.

Solo en Inglaterra, más de 20 astilleros participaron en esta actividad, construyendo cerca de 200 buques: barcazas con una capacidad de elevación de 1000 toneladas, remolcadores con una capacidad de 750 hp y buques de carga seca con una capacidad de elevación de 11 toneladas.




Construcción de barcos de hormigón armado, EE.UU., 1918-1920.


Construcción de un barco de hormigón armado, Inglaterra, 1918.


Barco de vapor de hormigón “Palo Alto”, EE. UU., 1920


Barco de vapor de hormigón “Fate”, EE. UU., 1920


Barco de hormigón armado "Molliette", Inglaterra, 1919


Barcaza marítima de hormigón armado con capacidad de elevación de 1000 toneladas, Alemania, Primera Guerra Mundial


Buque cisterna con capacidad de elevación de 2000 toneladas, EE. UU., 1920 (a - sección a lo largo de los tanques , b - sección a través de la sala de máquinas)
1 - canal de aire, 2 - tanque de aceite, 3 - canal de aceite, 4 - motor

Con el fin de la guerra, el interés por la construcción naval de hormigón armado en el extranjero prácticamente desapareció, pero con el estallido de la Segunda Guerra Mundial resurgió. El mayor número de buques de hormigón se construyó en Inglaterra, Estados Unidos y Alemania.
Por ejemplo, en Alemania se construyeron petroleros con una capacidad de carga de 3000 y 3400 toneladas, barcazas (700 y 1000 toneladas), cargueros (3700 y 4200 toneladas), barcos de arrastre, buques fluviales autopropulsados ​​y barcazas.


Buque de hormigón armado "Carmita", EE. UU., Segunda Guerra Mundial

En la URSS, la construcción de barcos de hormigón armado comenzó solo después de la Revolución de Octubre: en 1920, se construyó un pontón para una grúa flotante. En 1922, el Comisariado del Pueblo de Ferrocarriles (NKPS) creó una comisión para la construcción naval de hormigón armado, y en 1926, el Registro de la URSS publicó las primeras "Normas y Reglamentos para la Construcción Naval de Hormigón Armado".

Desde 1925 hasta el comienzo de la Segunda Guerra Mundial, se construyeron en los astilleros de Leningrado y Rybinsk un dique flotante con una capacidad de elevación de 4000 toneladas y tres más con una capacidad de 6000 toneladas, un transbordador ferroviario para cruzar el Volga, capaz de transportar 22 vagones con una locomotora, una serie de embarcaderos con un desplazamiento total de 1575 y 2580 toneladas, y pontones para el Caspio. Gran parte de estos trabajos aún se utilizan.

Durante los primeros años de la guerra, no se construyeron barcos de hormigón, pero ya en 1943 se inició la construcción de un astillero de hormigón armado en Bakú. Desde 1946, se inició la construcción en serie de diques flotantes con una capacidad de carga de 6000 toneladas en el astillero de Kherson. Entre 1946 y 1948, también se llevó a cabo la construcción en masa de embarcaciones flotantes de hormigón en seis astilleros fluviales.


Muelle ZhB-2, San Petersburgo


Embarcadero de hormigón armado

La construcción de buques de hormigón armado se lleva a cabo actualmente tanto en Rusia como en el extranjero, aunque en volúmenes mucho menores. Se trata principalmente de diques flotantes, embarcaderos, atracaderos flotantes, cimentaciones para plataformas petrolíferas y gasíferas marinas y otros buques de amarre. Esta tecnología presenta una mayor rentabilidad en comparación con la construcción de estructuras metálicas similares debido a su bajo coste, mayor durabilidad y tecnología de construcción simplificada. Además, se consume menos acero y se utiliza acero de refuerzo laminado, más económico, en lugar de productos laminados en chapa y perfil.


Goleta de hormigón armado “Larinda”, Canadá, 2012
Yate de hormigón armado "Nefertiti", Nizhni Nóvgorod

El hormigón armado es un material de construcción complejo compuesto por hormigón y armaduras (varillas de acero, alambre, malla tejida, etc.). La necesidad de usar armaduras se debe a que el hormigón resiste la tracción de 10 a 15 veces peor que la compresión, por lo que está diseñado para trabajar a compresión y la armadura, a tracción.

El hormigón se fabrica con cemento Portland y rellenos (arena, piedra triturada, arcilla expandida, etc.). Al endurecerse, el hormigón se adhiere firmemente a las armaduras de acero y, al trabajar bajo carga, ambos materiales se deforman conjuntamente. En la construcción naval se utilizan los siguientes tipos de hormigón armado: con armaduras no tensadas y pretensadas, así como ferrocemento. El ferrocemento es hormigón de grano fino, reforzado dispersamente con mallas tejidas de acero.

Materiales compuestos de polímeros


En 1942, el ingeniero Ray Green (quien trabajaba para la ya mencionada empresa de vidrio Owens-Illinois) construyó un bote salvavidas con fibra de vidrio y resina de poliéster. Este fue uno de los primeros pasos de los compuestos poliméricos en la construcción naval.

La matriz de los compuestos poliméricos son termoplásticos, que conservan sus propiedades durante el calentamiento y enfriamiento repetidos, y resinas termoendurecibles, que adquieren una estructura determinada de forma irreversible al calentarse.
Los materiales compuestos poliméricos (PCM) más comunes utilizados en la construcción naval son:

• Plásticos reforzados con vidrio que contienen hasta un 80 % de fibras de vidrio de silicato. Se caracterizan por su transmitancia óptica y de radio, baja conductividad térmica, alta resistencia, buenas propiedades de aislamiento eléctrico y bajo coste.

• Plásticos reforzados con fibra de carbono con fibras de carbono artificiales o naturales basadas en derivados de celulosa, petróleo o carbón. Son más ligeros y resistentes que la fibra de vidrio, no son transparentes, no cambian sus dimensiones lineales con los cambios de temperatura y son buenos conductores de la electricidad. Resisten altas temperaturas incluso en entornos agresivos.

• Plásticos de boro con fibras, hilos y haces de boro. Muy duros y resistentes al desgaste, no temen a las sustancias agresivas, pero no soportan el funcionamiento a altas temperaturas.

• Los compuestos metálicos se fabrican a base de metales no ferrosos como el cobre, el aluminio y el níquel. Se utilizan fibras metálicas o monocristales de óxidos, nitruros, cerámicas, carburos y boruros como relleno. Gracias a esto, se obtienen compuestos con propiedades físicas superiores a las del metal puro original.

• Los compuestos cerámicos se producen sinterizando a presión la masa cerámica original con la adición de fibras o partículas. Si se utilizan fibras metálicas como relleno, se obtienen cermets. Se distinguen por su resistencia al choque térmico y su alta conductividad térmica. Los cermets se utilizan para producir piezas resistentes al desgaste y al calor, como turbinas de gas, piezas de sistemas de frenos y barras de combustible para reactores nucleares.

A pesar de su baja densidad, los PCMs tienen altas características mecánicas. La resistencia a la tracción de los aceros es de aproximadamente 240 MPa, la de las aleaciones de aluminio, de 50 a 440 MPa, y la de los PCM, de 70 a 1 MPa.
Otras ventajas del PCM en comparación con los metales incluyen, en particular:

• No magnético y radiotransparente;
• Resistencia a la putrefacción y la corrosión;
• Posibilidad de regular las propiedades del material variando la estructura de refuerzo;
• Multifuncionalidad lograda mediante la introducción de diversos modificadores en el material;
• Resistencia a los efectos de los organismos marinos;
• Costos operativos reducidos debido a la ausencia de corrosión;
• Alta resistencia a la vibración de las estructuras.
• Baja gravedad específica;
• Altas propiedades de aislamiento térmico;
• Retardante de llama (con propagación lenta de la llama en la superficie);
• Menor visibilidad de radar para buques de fibra de vidrio;
• Alta facilidad de mantenimiento.

Ya en 1938, en la URSS, bajo la dirección del profesor B. A. Arkhangelsky, se fabricaron las primeras hélices con un diámetro de 0,42 y 0,63 m a partir de textolita y textolita reforzada con chapa de acero. Sin embargo, estas hélices aún no ofrecían la fiabilidad necesaria.

En la década de 1960, se crearon en la Unión Soviética plásticos reforzados con fibra de vidrio de epoxiamina de la marca STET, con propiedades de alto rendimiento. Sobre esta base, se desarrollaron y patentaron diseños y tecnologías de fabricación para hélices de barcos y sistemas de propulsión de aerodeslizadores, que posteriormente se instalaron y operaron con éxito en cientos de buques.
Ya en la década de 1950, se crearon en nuestro país materiales poliméricos especiales para rellenar huecos de ensamblaje en la construcción y reparación naval. Se utilizaron como juntas de ajuste poliméricas durante la instalación de diversos motores y mecanismos.


Junta de ajuste de polímero

Inicialmente, el uso de PCM se limitaba principalmente al uso de fibra de vidrio en la construcción de embarcaciones pequeñas (botes, lanchas pequeñas, yates de vela y motor), cercas para cabinas de submarinos resistentes, superestructuras de botes y embarcaciones pequeñas, carenados de antenas de sonar y carcasas radiotransparentes para antenas de radar. El recubrimiento de la superficie exterior de los cascos de embarcaciones pequeñas de madera con fibra de vidrio aumentó significativamente su durabilidad.

Por primera vez en la construcción de submarinos, el PCM comenzó a utilizarse en EE. UU. durante la modernización de los submarinos construidos durante la Segunda Guerra Mundial bajo el programa GUPPI (Gran Potencia Propulsiva Submarina). Se les incorporaron nuevas cercas para torres de mando y dispositivos retráctiles fabricados con fibra de vidrio de poliéster. Actualmente, la fibra de vidrio ocupa un lugar importante en el diseño de submarinos.


Submarino argentino "Santa Fe" (anteriormente estadounidense) con caseta de cubierta de fibra de vidrio

Más tarde, en los EE. UU. y varios países de Europa occidental, se comenzó a construir cascos de barcos y embarcaciones con un desplazamiento de hasta 900 toneladas a partir de fibra de vidrio de poliéster y materiales compuestos de polímero de tres capas (fibra de vidrio-plástico espumado-fibra de vidrio).

Desde la década de 1960, la fibra de vidrio se ha utilizado ampliamente en la construcción de buques de defensa contra minas. Esto se debió tanto a las propiedades no magnéticas de este material como a su mayor resistencia a las explosiones submarinas en comparación con los cascos de acero, así como a su menor peso. Dichos buques se construyen en Rusia y países europeos de la OTAN, así como en Japón, Corea del Sur, China y Taiwán.

En la URSS, el trabajo en la creación de fibra de vidrio marina comenzó a mediados de la década de 1950. Los primeros dragaminas soviéticos con cascos completamente de fibra de vidrio fueron los buques Izumrud del Proyecto 1252 con un desplazamiento total de 320 toneladas. En 1964, se entregaron tres buques de este tipo a la flota.


Buscaminas - proyecto 1252

Al mismo tiempo, surgió el problema de la reparabilidad del casco de fibra de vidrio del buque, ya que los métodos tradicionales de reparación utilizados en la construcción naval metálica no eran adecuados. La tecnología y los materiales empleados en la construcción de un casco de plástico en taller tampoco eran viables. El problema se solucionó utilizando un aglutinante especial que garantizaba su polimerización a temperaturas relativamente bajas y alta humedad ambiental. El casco del primer PMO, que sufrió un agujero de varios metros cuadrados como resultado de la colisión, se reparó utilizando esta tecnología en 24 horas.

Actualmente, se han generalizado las composiciones diseñadas para la reparación rápida de cascos compuestos de buques en el mar. Consisten en resina, endurecedor y fibra de vidrio. Además, es posible aplicar un parche en la zona dañada tanto en superficie como bajo el agua. La composición recupera el 90 % de su resistencia en una hora.
Desde 1967, la URSS (y posteriormente Bulgaria) comenzó a construir los dragaminas Korund del Proyecto 1258. Se construyeron un total de 92 buques del Proyecto 1258 y sus modificaciones.


Buscaminas - proyecto 1258

Desde 1989, se han puesto en servicio los dragaminas del Proyecto 10750 Zafiro (se construyeron 10 unidades). El casco del dragaminas está fabricado con fibra de vidrio monolítica formada por infusión al vacío.


Buscaminas - proyecto 10750

En octubre de 2016, el dragaminas principal del Proyecto 2018 "Alexandrite", con un desplazamiento total de 12.700 toneladas, construido en el Astillero Sredne-Nevsky (en 820 fue reclasificado como buque de navegación marítima), entró en servicio en la Flota del Báltico. Actualmente, ocho de estos buques ya están en servicio y cinco más están en construcción.


El dragaminas "Alexandrite" del proyecto 12700 durante las pruebas en el mar.

Una característica importante del nuevo buque es su diseño único, en particular la tecnología de fabricación del casco. El casco y la superestructura están fabricados con fibra de vidrio monolítica sobre resina epoxi mediante infusión al vacío. Simultáneamente, se estableció un récord tecnológico mundial durante la creación del dragaminas: por primera vez en el mundo, se fabricó un casco monolítico de fibra de vidrio con una eslora de casi 62 metros. La tecnología de fabricación del casco se desarrolló con la participación del Instituto Central de Investigación de Materiales Estructurales "Prometeo" y el Instituto Central de Investigación que lleva el nombre del académico Krylov.


Fabricación del casco del dragaminas del proyecto 12700 "Alexandrite"

Los preparativos para la construcción del buque líder comenzaron en 2007. Los dos primeros años se dedicaron al diseño y los tres restantes a las pruebas de la nueva tecnología de infusión al vacío de la planta.

El Astillero Sredne-Nevsky ha construido un catamarán de pasajeros del Proyecto 23290 "Griffin" con casco de fibra de carbono.


Catamarán "Griffin" proyecto 23290

En la década de 1980, la Oficina de Diseño y Tecnología Sudokompozit (Feodosia) fue la primera de la URSS en desarrollar y fabricar casetas de cubierta para buques de combate, fabricadas con materiales compuestos de polímero, para los pequeños buques de desembarco aerodeslizadores del Proyecto 12322 Zubr, que se construían en los Astilleros Primorsky (Leningrado) y More (Feodosia). Estas casetas contaban con blindaje y proporcionaban protección térmica y acústica a la tripulación y al personal de desembarco, además de un complejo de anillos de hélice (anillos de tobera) y tomas de aire para los ejes de los sobrealimentadores axiales.


Proyecto MDK 12322 "Bisonte"

Según el diseño de la Oficina Central de Diseño Marino de Almaz, las corbetas de los proyectos 20380 Steregushchiy, 20385 Gremyashchiy y 20386 Derzkiy se están construyendo en el Astillero PAO Severnaya Verf y el Astillero PAO Amur.


Corbetas de los proyectos 20380 (arriba) y 20385


Modelo del proyecto corbeta 20386

Una característica especial de estos buques es su superestructura, fabricada con materiales compuestos multicapa: fibra de vidrio multicapa ignífuga y materiales a base de fibra de carbono. El diseño de la superestructura se desarrolló teniendo en cuenta los requisitos modernos de visibilidad en los rangos de radar e infrarrojos, lo que redujo la superficie de dispersión efectiva (ESR) circular promedio de los buques aproximadamente tres veces en comparación con buques similares, y la probabilidad de ser atacada por misiles de crucero antibuque se redujo de 0,5 a 0,1.

El 17 y 18 de diciembre de 2021, durante la fase de preparación para la botadura, se produjo un incendio en la corbeta Provorny, en construcción en el astillero Severnaya Verf. Como resultado, la superestructura compuesta del buque quedó prácticamente destruida, y la estructura integrada de la torre y el mástil, hecha de aleaciones de aluminio y magnesio, también se incendió.

Sin embargo, se afirmó que el compuesto de la superestructura quemada era un material no inflamable. Por lo tanto, surgió una versión de que se utilizaron medios inadecuados para extinguir el incendio, lo que provocó una reacción química.


La superestructura quemada de la corbeta "Provorny"

El uso de PCM permitió crear un marco intermedio compuesto que absorbe las vibraciones para las unidades de engranajes diésel de las corbetas, lo que, al reducir el nivel de ruido de los mecanismos de la planta de propulsión, redujo la visibilidad del buque en el rango hidroacústico.


Bastidor intermedio compuesto para una unidad de engranaje diésel de una corbeta

Los PKM también se han utilizado ampliamente en las fragatas clase Almirante Gorshkov del Proyecto 2006, que han estado en construcción en el astillero Severnaya Verf de San Petersburgo desde 2023.


Fragata "Almirante Gorshkov"

Están equipados con una superestructura fabricada con materiales compuestos a base de cloruro de polivinilo y fibra de carbono. Gracias a esto, y a la arquitectura original de la superestructura, fue posible reducir significativamente su visibilidad radar y óptica.

Un ejemplo interesante del uso de PKM son las corbetas furtivas suecas de clase Visby (construidas por el astillero Kockums; el buque líder se incorporó a la flota en 2002).




Corbeta clase Visby

El casco del buque está fabricado con paneles sándwich: una capa intermedia de PVC y capas exteriores de fibra de carbono reforzada con un aglutinante de éster de vinilo. La tecnología para la fabricación de estas estructuras fue desarrollada por Kockums.

Gracias al uso de PCM, el peso del casco se redujo en un 50 % en comparación con uno metálico, y tanto gracias al PCM como a la elección de formas óptimas, su visibilidad radar se redujo drásticamente. Además de absorber las ondas de radio del radar, los haces de carbono garantizan su dispersión, lo que ayuda a reducir el nivel del campo radar secundario del buque. También se redujeron los campos ópticos, magnéticos y térmicos.

Gracias a esto, incluso sin el uso de guerra electrónica, el buque puede ser detectado a una distancia de tan solo 22 km en calma y 13 km en mar gruesa. Con el uso de guerra electrónica, estos valores se reducen a 8 y 11 km, respectivamente.

Una solución técnica excepcional en el campo de la aplicación de PCM es, sin duda, la superestructura de los superdestructores estadounidenses del tipo DDG-1000 "Zumwalt" (desplazamiento de 15 toneladas). La masa de la superestructura de siete niveles de estos buques, con unas dimensiones de 000 x 48,8 x 21,3 m, es de 19,8 toneladas. Los tres primeros niveles son de acero y los cuatro superiores, de paneles sándwich planos. El material de los paneles es relleno de balsa de 900–50,8 mm de espesor, revestido con capas de fibra de carbono sobre un aglutinante de viniléster de 76,2 mm de espesor y blindaje de Kevlar.


Transporte de la superestructura del destructor DDG-1000 “Zumwalt”


Destructor DDG-1000 “Zumwalt”

Un ejemplo del uso de la fibra de carbono en la construcción naval civil es el exclusivo superyate de tres cascos a motor "Khalilah", construido en 2015 en el astillero Palmer Johnson (EE. UU.), cuyo casco está fabricado íntegramente en fibra de carbono. Sus dimensiones principales son 49,5 x 11,0 x 2,1 m, su tonelaje es de 485 TRB y su velocidad es de 24 nudos.



Superyate de tres cascos “Khalilah”

Además de en las estructuras de los cascos de los barcos, los compuestos poliméricos se utilizan en el cercado de dispositivos retráctiles, estabilizadores y palas de timón de submarinos, en los cascos resistentes de vehículos submarinos, en ejes de hélice y hélices, tuberías, cilindros de aire de alta presión, mástiles, desde yates de vela hasta grandes buques militares.


El vehículo submarino Vityaz, que llegó al fondo de la Fosa de las Marianas. Su casco está construido con PKM.

Los cojinetes PCM que funcionan con lubricación por agua se utilizan ampliamente en la construcción naval (cojinetes de bocina, cojinetes de mecanismo de gobierno, etc.) debido a su alto nivel de respeto al medio ambiente, propiedades de amortiguación, diseño sencillo y larga vida útil. Durante su funcionamiento, estos elementos estructurales suelen operar en condiciones de lubricación deficiente y, en ocasiones, en ausencia total de un entorno lubricante.

Un ejemplo de este tipo de PCM es el material nacional SVCh 307, un material compuesto termoplástico a base de tereftalato de polietileno (PET), reforzado con un complejo de aditivos especializados.

Fuentes


  1. Z. P. Bonduryansky et al. Buques de hormigón armado de navegación marítima (diseño del casco). L.: "Construcción naval", 1966.
  2.  Eliseeva O. V. y otros. Materiales compuestos en la construcción naval. "Revista electrónica científica y práctica Alley of Science" n.º 3 (54) 2021.
  3.  Meleshin M. A. y otros. Experiencia en el uso de materiales compuestos en la construcción naval. Boletín de la ASTU. Serie: Ingeniería y tecnología marina. 2022. n.º 2.
  4.  Safin, V. N. Materiales compuestos: texto de conferencias. Cheliábinsk: Centro editorial de SUSU, 2010.
  5.  Kushner V. S. Ciencia de los materiales. Omsk: Editorial de OmskGTU, 2008.
  6.  Zazimko V. Aplicación de materiales compuestos como impulsor de los sectores de la industria de defensa. "Nuevo orden de defensa. Estrategias",
  7.  7de abril de 2017. Introducción a la disciplina: Materiales compuestos. Clasificación | Sitio web de aprendizaje a distancia - MOODLE KNITU (KHTI)

viernes, 2 de mayo de 2025

Cañón de riel: Se desarrolla un modelo embarcado japonés

Cañón de riel embarcado para la Armada Japonesa

Kirill Ryabov || Revista Militar





Concepto inicial de cañón de riel según documentos del Ministerio de Defensa japonés

Desde mediados de la década pasada, la industria militar japonesa ha trabajado en la creación de un prometedor cañón de riel diseñado para buques de guerra. Actualmente, el proyecto ha alcanzado la fase de fabricación y prueba de un prototipo, que está demostrando sus capacidades y en desarrollo. Recientemente, se presentó otra versión del cañón de riel en instalaciones de artillería, probablemente apta para su incorporación al servicio.

Proceso de desarrollo

El Ministerio de Defensa japonés inició el desarrollo de un prometedor cañón de riel en 2016. El Centro de Investigación de Sistemas Terrestres (GSRC), perteneciente a la Agencia de Adquisiciones, Tecnología y Logística (ATLA), fue designado como desarrollador principal. Otras organizaciones y empresas, incluidas algunas comerciales, también participaron en el trabajo.

El objetivo del nuevo proyecto era investigar en el campo de los sistemas de aceleración electromagnética. Para 2022, los participantes del proyecto debían encontrar tecnologías y soluciones óptimas para el desarrollo de un cañón de riel completo. El ensamblaje del primer prototipo con características limitadas también estaba previsto para este período.

Ya en esta etapa, el arma proyectada debía cumplir requisitos bastante exigentes. Debía acelerar el proyectil a una velocidad mínima de 2 km/s. La autonomía deseada del sistema de lanzamiento-cañón se fijó en 120 disparos.

El GSRC logró encontrar diversas soluciones y materiales nuevos que se adaptaban óptimamente a las características del proyecto. Ya en 2018, los participantes del proyecto fabricaron y probaron el primer prototipo del futuro arma en un stand. Sus pruebas y perfeccionamiento continuaron hasta 2022. La primera etapa del proyecto costó al Ministerio de Defensa 1.000 millones de yenes, más de 7,1 millones de dólares estadounidenses.


Prototipo en pruebas en otoño de 2023.

El montaje naval experimental se construyó a más tardar en el verano de 2023. Se instaló en la cubierta del buque experimental JS Asuka y se preparó para futuras pruebas. El primer disparo de prueba tuvo lugar en octubre de ese mismo año. Tras estos eventos, la agencia ATLA incluso publicó un breve vídeo que mostraba el disparo. Por razones obvias, solo se mostró la boca del cañón, mientras que otras unidades no se incluyeron en el encuadre.

Éxitos recientes

El GSRC y las organizaciones relacionadas continúan desarrollando el nuevo montaje de artillería. El diseño existente se está mejorando con base en la experiencia de las pruebas, así como en la necesidad de mejorar el rendimiento. Tras todos los cambios, se realizan nuevas pruebas en el portaaviones con disparos de prueba.

Hace unos días, ATLA y el GSRC publicaron una nueva foto del montaje de artillería en su forma actual. No está claro cómo ha cambiado el cañón de riel en sí. Sin embargo, recibió una carcasa completa, probablemente blindada, así como varios sistemas y dispositivos auxiliares para diversos fines.

La instalación permanece en el JS Asuka y realiza disparos de prueba regularmente. Por razones obvias, no se informan todos los resultados de las pruebas. En las noticias oficiales solo se mencionan los éxitos y la confirmación de las características calculadas.

Planes para el futuro

Según datos públicos, la fase actual de trabajo en el cañón de riel durará hasta 2026 inclusive. Al parecer, durante el próximo año y medio, ATLA y GSRC realizarán las pruebas restantes y, de ser necesario, perfeccionarán el diseño existente.

Aún se desconoce qué ocurrirá a continuación. Probablemente, una vez finalizadas las pruebas, el Ministerio de Defensa japonés estudiará los resultados del proyecto y los evaluará. En primer lugar, el departamento deberá decidir si las Fuerzas de Autodefensa Marítima necesitan un tipo de arma fundamentalmente nuevo y si se debe desarrollar el proyecto existente.


No se puede descartar que el Ministerio de Defensa tome una decisión positiva. En este caso, el montaje de artillería existente, tras algunas modificaciones y la corrección de las últimas deficiencias, podría llegar a la producción en serie. Sin embargo, por ahora no cabe esperar que el cañón de riel naval se generalice y empiece a desplazar a los cañones de aspecto tradicional.

Lo más probable es que la nueva arma se fabrique en pequeñas series y se instale únicamente en buques individuales. No obstante, dicho despliegue solo será posible con una decisión positiva del departamento militar. De lo contrario, la nueva instalación se quedará en forma de prototipo.

Características técnicas

Anteriormente, los participantes del proyecto revelaron la apariencia aproximada de una instalación de artillería experimental, destinada a ser instalada en un portaaviones. También se publicaron fotografías de este producto a bordo del JS Asuka, incluidas las tomadas en el momento del disparo.

La instalación se distingue por su simplicidad de diseño. Está construida sobre una base giratoria con una parte basculante sobre la que se coloca el arma. En las últimas versiones del proyecto, la instalación y el arma estaban cubiertos con carcasas facetadas.

Al igual que otros cañones de riel, el desarrollo japonés cuenta con un cañón con guías conductoras. Tras él se encuentra el sistema de alimentación de munición. El cañón funciona con proyectiles originales de calibre 40 mm, con un peso aproximado de 320 g. Al mismo tiempo, existe la posibilidad fundamental de escalar el diseño para otros calibres.

Los sistemas de energía de la instalación de artillería se encuentran en los espacios bajo la cubierta del portaaviones. Incluyen dispositivos para la acumulación y liberación rápida de una carga eléctrica. Esta parte del complejo supera significativamente a la torreta con el cañón en volumen y peso.


El aspecto actual de la instalación de artillería experimental.

Tras los resultados de las pruebas de banco de 2018, se anunció que el prototipo era capaz de acelerar un proyectil de 40 mm a una velocidad aproximada de 2300 m/s. En este modo, el diseño resistió los 120 disparos especificados. También se informó que las características energéticas podrían mejorarse aún más.

La nueva instalación puede funcionar con diversos sistemas de control de fuego. Por ejemplo, el cañón prototipo probado en 2023 contaba con una cámara de vídeo sobre la recámara. La nueva instalación cerrada no cuenta con dicho dispositivo. Sin embargo, se puede suponer que el FCS estándar permite disparar basándose en datos de otros sistemas de control de fuego (OES) o radares. De hecho, el problema del control de fuego puede resolverse utilizando métodos tradicionales y probados, aunque con un ajuste a las características específicas del cañón de riel.

Los requisitos del buque portaaviones aún se desconocen. El buque experimental JS Asuka tiene unos 150 m de eslora y un desplazamiento de hasta 6300 toneladas. Su planta motriz está construida sobre la base de dos generadores de turbina de gas con una capacidad de 32 000 kW cada uno. Estas dimensiones y la reserva de potencia de la central eléctrica permitieron equipar el buque con un nuevo sistema de artillería. Cabe suponer que sus próximos portaaviones tendrán parámetros similares o superiores.

Nuevas tecnologías

Así, Japón, siguiendo el ejemplo de otros países, ha asumido el desarrollo de sistemas de artillería avanzados basados ​​en nuevos principios. Durante la última década, ha llevado a cabo la investigación y el desarrollo necesarios, y ha construido y probado un arma experimental. Simultáneamente, el diseño del cañón de riel y su instalación se encuentran en constante evolución y mejora.

Según el cronograma aprobado, el trabajo principal del proyecto actual finalizará el próximo año. Posteriormente, se extraerán conclusiones y se tomarán decisiones. Aún se desconoce si las Fuerzas de Autodefensa Japonesas utilizarán los nuevos desarrollos y se rearmarán. Sin embargo, los desarrolladores del nuevo proyecto ya tienen motivos para ser optimistas.

sábado, 15 de marzo de 2025

Propulsión nuclear: ¿Qué sucede con los reactores dados de baja?

¿Qué sucede con los reactores nucleares de la Armada?

Craig Ryan || Naval Historia

Los reactores navales de los Estados Unidos han revolucionado la guerra naval al proporcionar a los submarinos y portaaviones una resistencia, velocidad y flexibilidad operativa sin igual.

Los rigurosos protocolos de seguridad y las tecnologías avanzadas empleadas garantizan el funcionamiento seguro de estos reactores, al tiempo que minimizan el impacto ambiental.

Al mejorar la disuasión estratégica y las capacidades de proyección de poder, los reactores navales desempeñan un papel crucial en el mantenimiento de la superioridad marítima y la influencia global de los Estados Unidos.

Antecedentes de los reactores nucleares

El origen de los reactores navales de los Estados Unidos se remonta a los primeros días de la investigación nuclear durante la Segunda Guerra Mundial. El Proyecto Manhattan, centrado principalmente en el desarrollo de bombas atómicas, también sentó las bases para las aplicaciones pacíficas de la energía nuclear. Este proyecto reunió a algunas de las mentes más brillantes de la física y la ingeniería, lo que dio lugar a importantes avances en la tecnología nuclear. El exitoso desarrollo y despliegue de bombas atómicas al final de la Segunda Guerra Mundial demostró el inmenso potencial de la energía nuclear, lo que despertó el interés en su aplicación más allá del armamento.

Inmediatamente después de la guerra, se hizo evidente el potencial de la propulsión nuclear en los buques de guerra, que prometía rangos operativos significativamente extendidos y velocidades mayores en comparación con los sistemas de propulsión convencionales. La idea era aprovechar el poder de la fisión nuclear para generar energía continua y sustancial, que pudiera propulsar buques de guerra sin la necesidad frecuente de reabastecimiento de combustible. Esto era particularmente atractivo para los submarinos, que están severamente limitados por la necesidad de emerger regularmente para tomar aire y reabastecerse de combustible cuando utilizan sistemas diésel-eléctricos.


El USS Nautilus llega a Nueva York, 1958. Fue el primer submarino de propulsión nuclear operativo del mundo.

El almirante Hyman G. Rickover, a menudo considerado como el "Padre de la Armada Nuclear", jugó un papel crucial en el desarrollo e implementación de reactores navales. Su incansable búsqueda de la excelencia y sus estándares inflexibles sentaron las bases para una armada nuclear exitosa. La visión de Rickover era crear una flota de submarinos y barcos propulsados ​​por reactores nucleares que pudieran funcionar independientemente de la logística tradicional de combustible.

Bajo el liderazgo de Rickover, la División de Reactores Navales se estableció en 1948 como un esfuerzo conjunto entre la Marina de los EE. UU. y la Comisión de Energía Atómica (AEC). Esta colaboración tenía como objetivo desarrollar y gestionar el programa de propulsión nuclear. El enfoque de Rickover era metódico y estricto, y hacía hincapié en la seguridad, la fiabilidad y la formación exhaustiva del personal. Su estilo de gestión, a menudo descrito como autoritario, fue fundamental para superar los numerosos desafíos técnicos y burocráticos a los que se enfrentó durante los primeros años del programa.
Primeros avances

El primer hito importante en el desarrollo de los reactores navales fue la puesta en servicio del USS Nautilus (SSN-571) en 1954. El Nautilus fue el primer submarino de propulsión nuclear operativo del mundo, lo que marcó un importante avance tecnológico y estratégico. Impulsado por un reactor de agua presurizada (PWR), el Nautilus demostró la viabilidad y las ventajas de la propulsión nuclear. Rompió los récords existentes de resistencia y velocidad sumergida, viajando desde el Atlántico hasta el Pacífico a través del Polo Norte en un viaje histórico conocido como "Operación Sunshine".

El éxito del USS Nautilus allanó el camino para el rápido desarrollo y despliegue de submarinos y buques de superficie de propulsión nuclear adicionales. Las ventajas de la propulsión nuclear, como un alcance prácticamente ilimitado, una mayor resistencia sumergida y velocidades sostenidas más altas, revolucionaron las operaciones navales. Los submarinos de propulsión nuclear podían permanecer sumergidos durante períodos prolongados, evitando ser detectados y mejorando sus capacidades estratégicas y tácticas.


Núcleo del reactor nuclear del USS Nautilus.

Después del Nautilus, la Armada de los EE. UU. continuó expandiendo su flota nuclear con la introducción de submarinos de misiles balísticos (SSBN) y submarinos de ataque adicionales (SSN). Estos buques desempeñaron un papel fundamental en la estrategia de la Guerra Fría de los Estados Unidos, proporcionando una capacidad de segundo ataque creíble y con capacidad de supervivencia en caso de un conflicto nuclear.

Además de los submarinos, la Armada de los EE. UU. también desarrolló portaaviones de propulsión nuclear, comenzando con el USS Enterprise (CVN-65) en 1961. Estos portaaviones, propulsados ​​por múltiples reactores, proporcionaban una resistencia y una flexibilidad operativa incomparables, lo que permitía a la Armada de los EE. UU. proyectar su poder a nivel mundial sin depender de los suministros de combustible tradicionales.

Reactores nucleares navales

La tecnología detrás de los reactores navales de los EE. UU. ha experimentado avances significativos desde el inicio de la marina nuclear, centrados principalmente en el uso de reactores de agua presurizada (PWR). Los PWR se han convertido en la columna vertebral de la propulsión nuclear naval debido a su eficiencia, confiabilidad y características de seguridad.

El núcleo de un reactor naval contiene uranio enriquecido, generalmente uranio-235, que sirve como combustible. El uranio enriquecido tiene una mayor concentración del isótopo fisionable U-235 en comparación con el uranio natural, lo que aumenta la eficiencia del proceso de fisión. El núcleo del reactor está diseñado para sostener una reacción nuclear en cadena controlada, donde la fisión de los átomos de uranio libera una enorme cantidad de energía en forma de calor.

Uno de los avances tecnológicos críticos en los reactores navales es el uso de uranio altamente enriquecido (HEU). El HEU permite un núcleo más compacto con una vida operativa más larga, lo que permite que los submarinos y los barcos funcionen durante períodos prolongados sin necesidad de reabastecimiento de combustible. El núcleo está diseñado para optimizar la economía de neutrones, lo que garantiza que haya una cantidad suficiente de neutrones disponibles para sostener la reacción en cadena durante la vida operativa del reactor.


El USS Skate y el USS Seadragon después de emerger en el Ártico.

El sistema de refrigeración primario en un reactor de agua a presión es crucial para transferir calor fuera del núcleo del reactor. Este sistema utiliza agua a alta presión para evitar que hierva, lo que le permite absorber y eliminar el calor generado por el proceso de fisión nuclear. El agua presurizada circula a través del núcleo del reactor, absorbiendo calor y luego transfiriéndolo a un sistema de refrigeración secundario a través de generadores de vapor.

Los generadores de vapor desempeñan un papel fundamental en el proceso de transferencia de calor. El refrigerante primario calentado transfiere su energía térmica al refrigerante secundario, que también es agua pero se mantiene a una presión más baja. Esta agua secundaria se convierte en vapor, que luego se dirige para impulsar las turbinas conectadas al sistema de propulsión del buque y los generadores eléctricos.

El vapor producido en el sistema de refrigeración secundario impulsa las turbinas de propulsión, que convierten la energía térmica en energía mecánica. Estas turbinas están conectadas a las hélices del buque, proporcionando el empuje necesario para la propulsión. La capacidad de generar energía continua y sustancial permite a los buques de propulsión nuclear alcanzar velocidades más altas y rangos operativos más largos en comparación con sus contrapartes de propulsión convencional.

Además de la propulsión, los reactores navales también generan energía eléctrica para los sistemas del buque, incluidos los sistemas de soporte vital, navegación, comunicaciones y armas. La integración de los sistemas de propulsión y generación de energía mejora la eficiencia y la capacidad generales del buque.

Características de seguridad y redundancia

La seguridad es una preocupación primordial en el diseño y el funcionamiento de los reactores navales. Se incorporan múltiples capas de características de seguridad para proteger a la tripulación y al medio ambiente de los peligros de la radiación. Estas características incluyen:

1. Sistemas de refrigeración redundantes: varios sistemas de refrigeración independientes garantizan que el reactor se mantenga adecuadamente refrigerado incluso si falla un sistema. Esta redundancia es fundamental para evitar el sobrecalentamiento y posibles daños al núcleo.
2. Estructuras de contención: Las estructuras de contención robustas están diseñadas para evitar la liberación de materiales radiactivos en caso de accidente. Estas estructuras están hechas de acero grueso y hormigón armado, capaces de soportar condiciones extremas.
3. Mecanismos de apagado automático: En caso de un mal funcionamiento o una condición anormal, los mecanismos de apagado automático, también conocidos como sistemas SCRAM, insertan rápidamente barras de control en el núcleo del reactor para detener la reacción de fisión. Las barras de control están hechas de materiales que absorben neutrones, deteniendo eficazmente la reacción en cadena.
4. Sistemas de monitoreo avanzados: Los reactores navales modernos están equipados con sofisticados sistemas de monitoreo que rastrean continuamente los parámetros del reactor, como la temperatura, la presión y los niveles de radiación. Estos sistemas brindan datos en tiempo real a los operadores del reactor, lo que permite una respuesta rápida ante cualquier anomalía.


USS Thresher fotografiado en 1961. Se hundió durante pruebas de inmersión profunda, lo que marcó la primera vez que un submarino nuclear se perdería en el mar.


Evolución del diseño de reactores

A lo largo de las décadas, el diseño de los reactores navales ha evolucionado para mejorar su rendimiento, seguridad y eficiencia. Los primeros reactores, como los utilizados en el USS Nautilus, han sido reemplazados por modelos más avanzados con mayor densidad de potencia, vida útil más prolongada y características de seguridad mejoradas. El desarrollo del reactor S8G, utilizado en los submarinos de la clase Ohio, y el reactor A4W, utilizado en los portaaviones de la clase Nimitz, ejemplifican el progreso en la tecnología de los reactores.

Los avances recientes se centran en reducir el tamaño y el peso de los reactores, aumentando al mismo tiempo su potencia de salida. Las innovaciones en la ciencia de los materiales, como el uso de aleaciones y cerámicas avanzadas, han contribuido a estas mejoras. Además, la integración de sistemas de control digital ha mejorado la precisión y la fiabilidad de las operaciones de los reactores.

Implicaciones estratégicas

Uno de los beneficios estratégicos más importantes de los submarinos de propulsión nuclear es su papel en la disuasión nuclear. Los submarinos de misiles balísticos (SSBN) forman la rama marítima de la tríada nuclear de los Estados Unidos, junto con los misiles balísticos intercontinentales (ICBM) y los bombarderos estratégicos basados ​​en tierra. Los SSBN están equipados con misiles balísticos lanzados desde submarinos (SLBM), capaces de lanzar ojivas nucleares a objetivos en todo el mundo.

La principal ventaja de los SSBN reside en su sigilo y capacidad de supervivencia. La propulsión nuclear permite que estos submarinos permanezcan sumergidos durante períodos prolongados, lo que reduce el riesgo de detección por las fuerzas enemigas. Su capacidad de operar silenciosamente e independientemente del apoyo de superficie los convierte en un formidable elemento de disuasión. En un posible conflicto nuclear, los SSBN proporcionan una capacidad segura de segundo ataque, lo que garantiza que Estados Unidos pueda tomar represalias incluso si sus fuerzas nucleares terrestres y aéreas se ven comprometidas. Esta capacidad asegurada de segundo ataque es una piedra angular de la estabilidad estratégica, que disuade a los adversarios de lanzar un primer ataque.


El USS Sam Rayburn fotografiado a mediados de la década de 1960. Nótese los tubos abiertos para sus misiles Polaris.

Los submarinos y portaaviones de propulsión nuclear mejoran la movilidad estratégica y la presencia de la Armada de los EE. UU. El alcance operativo extendido y la resistencia de los buques de propulsión nuclear les permiten desplegarse rápidamente en zonas de crisis y mantener una presencia continua en áreas estratégicas. Esta capacidad es crucial para la proyección de poder, lo que permite a los Estados Unidos influir en los eventos que ocurren lejos de sus costas.

Los portaaviones, como los de las clases Nimitz y Ford, sirven como bases aéreas flotantes, capaces de lanzar y recuperar aeronaves en cualquier parte del mundo. La propulsión nuclear otorga a estos portaaviones la capacidad de permanecer en la posición durante meses sin reabastecerse, lo que proporciona apoyo aéreo sostenido y dominio marítimo. Esta capacidad es vital para mantener la libertad de navegación, proteger las rutas marítimas y responder a las amenazas emergentes.

Más allá de su papel de disuasión estratégica, los submarinos de propulsión nuclear son invaluables en la guerra convencional y las operaciones de recopilación de inteligencia. Los submarinos de ataque (SSN) están diseñados para atacar submarinos y buques de superficie enemigos, realizar reconocimientos y apoyar a las fuerzas de operaciones especiales. Su velocidad, resistencia y sigilo los hacen ideales para estas misiones.


Un misil Poseidon disparado desde el USS Ulysses S. Grant.

En la guerra antisubmarina (ASW), los submarinos nucleares pueden cazar y rastrear submarinos enemigos, neutralizando amenazas potenciales para las fuerzas navales de Estados Unidos y sus aliados. Su capacidad de operar de forma encubierta y permanecer en posición durante períodos prolongados mejora su eficacia en la vigilancia y la lucha contra los movimientos del adversario. Además, los submarinos nucleares están equipados con sistemas avanzados de sonar y guerra electrónica, lo que les permite reunir información crítica y realizar operaciones de vigilancia.

La introducción de buques de propulsión nuclear ha influido fundamentalmente en la doctrina y la estrategia naval de Estados Unidos. La capacidad de sostener operaciones de alto ritmo sin las limitaciones logísticas de los suministros de combustible tradicionales ha reconfigurado la planificación y las operaciones navales. El énfasis de la Armada de Estados Unidos en la presencia avanzada, la respuesta rápida y la proyección de poder se hace posible gracias a las capacidades de su flota nuclear.

Los reactores navales también han impulsado el desarrollo de nuevas tácticas y conceptos operativos. Por ejemplo, la capacidad de los submarinos nucleares nucleares de patrullar vastas zonas oceánicas sin ser detectados ha dado lugar al concepto de ambigüedad estratégica, lo que complica los esfuerzos de planificación y selección de objetivos del adversario. De manera similar, la resistencia y velocidad de los SSN respaldan el desarrollo de tácticas agresivas para submarinos desplegados en el frente, lo que mejora la capacidad de la Armada para controlar puntos críticos marítimos y disuadir las acciones del adversario.

Preocupaciones ambientales

A pesar de las numerosas ventajas que ofrece la propulsión nuclear, las consideraciones ambientales y de seguridad siguen siendo preocupaciones primordiales para la Armada de los EE. UU. La operación de reactores navales implica gestionar los riesgos potenciales asociados con la radiación, garantizar la seguridad del personal y abordar los impactos ambientales. La Armada de los EE. UU. ha desarrollado protocolos estrictos y tecnologías avanzadas para mitigar estos riesgos, centrándose en la seguridad de los reactores, la gestión de desechos y la protección ambiental.

Seguridad de los reactores

La seguridad es un aspecto crítico de la operación de los reactores navales, que requiere un diseño riguroso, ingeniería y estándares operativos. Los reactores navales están diseñados con múltiples sistemas de seguridad para prevenir accidentes y minimizar el riesgo de liberación de radiación. Las características de seguridad clave incluyen:

1. Sistemas de enfriamiento redundantes: el sistema de enfriamiento primario está respaldado por múltiples sistemas independientes para garantizar que el reactor permanezca adecuadamente refrigerado incluso si falla un sistema. Esta redundancia es crucial para prevenir el sobrecalentamiento y el posible daño al núcleo, que podría provocar fugas de radiación.
2. Estructuras de contención: se construyen estructuras de contención robustas para encerrar el reactor y evitar la liberación de materiales radiactivos. Estas estructuras, hechas de acero grueso y hormigón armado, están diseñadas para soportar condiciones extremas, incluidas colisiones y explosiones.
3. Mecanismos de apagado automático: los reactores navales están equipados con sistemas automatizados que pueden apagar rápidamente el reactor en caso de una condición anormal o mal funcionamiento. Estos sistemas, conocidos como mecanismos SCRAM, insertan barras de control en el núcleo del reactor para detener la reacción de fisión mediante la absorción de neutrones.
4. Sistemas de monitoreo avanzados: el monitoreo continuo de los parámetros del reactor, como la temperatura, la presión y los niveles de radiación, es esencial para una operación segura. Los sensores y sistemas de control sofisticados proporcionan datos en tiempo real a los operadores, lo que permite una detección y respuesta rápidas ante cualquier anomalía.
5. Programas de capacitación integrales: los operadores del reactor y el personal de mantenimiento reciben una capacitación exhaustiva para manejar los sistemas de propulsión nuclear de manera segura. Esta capacitación incluye simulaciones rigurosas, simulacros y el cumplimiento de estrictos protocolos operativos para garantizar la preparación ante posibles incidentes.

La gestión de los desechos nucleares

La gestión de los desechos nucleares es una consideración ambiental importante para la operación de los reactores navales. La eliminación del combustible nuclear gastado y otros materiales radiactivos requiere una manipulación cuidadosa para evitar la contaminación ambiental. La Marina de los EE. UU. ha implementado varias medidas para gestionar los desechos nucleares de manera efectiva:

1. Manejo y almacenamiento del combustible gastado: el combustible nuclear gastado, que permanece radiactivo y térmicamente caliente, se almacena inicialmente en piscinas de enfriamiento especialmente diseñadas. Estas piscinas permiten que el combustible se enfríe y reduzca su radiactividad con el tiempo. Posteriormente, el combustible gastado se transfiere al almacenamiento en contenedores secos, donde se encierra en contenedores robustos diseñados para evitar fugas de radiación.
2. Reciclaje y reprocesamiento: los esfuerzos para reciclar y reprocesar el combustible nuclear gastado son parte de la estrategia de la Marina para reducir los desechos. El reprocesamiento implica extraer materiales fisionables utilizables del combustible gastado, que luego se pueden reutilizar en reactores. Este proceso reduce el volumen de desechos de alto nivel y conserva materiales nucleares valiosos.
3. Eliminación de reactores fuera de servicio: cuando se desmantelan buques de propulsión nuclear, sus reactores deben desmantelarse y eliminarse de manera segura. La Marina de los EE. UU. sigue protocolos estrictos para el desmantelamiento de reactores, incluida la eliminación y eliminación segura de componentes radiactivos. Los reactores fuera de servicio generalmente se entierran en instalaciones seguras diseñadas para contener la radiación y prevenir la contaminación ambiental.


El sitio de eliminación de reactores navales en el condado de Benton en el estado de Washington, EE. UU.

Protección ambiental

La protección del medio ambiente es una consideración clave en el funcionamiento de los reactores navales. La Marina de los EE. UU. toma varias medidas para minimizar el impacto ambiental de su programa de propulsión nuclear:

1. Control y monitoreo de la radiación: el monitoreo continuo de los niveles de radiación dentro y alrededor de las bases navales, astilleros y áreas operativas garantiza que la exposición a la radiación se mantenga dentro de límites seguros. La Marina emplea sistemas de detección avanzados para monitorear cualquier signo de fuga o contaminación por radiación.
2. Minimización del impacto operativo: el diseño y la operación de los buques de propulsión nuclear apuntan a minimizar su impacto en los entornos marinos. Por ejemplo, el uso de reactores de agua presurizada (PWR) garantiza que el refrigerante primario, que está en contacto con el núcleo del reactor, no entre en contacto con el entorno externo, evitando así la liberación de materiales radiactivos.
3. Cumplimiento de las regulaciones ambientales: la Marina de los EE. UU. se adhiere a las regulaciones ambientales nacionales e internacionales que rigen la operación de buques de propulsión nuclear. Este cumplimiento incluye el cumplimiento de estándares estrictos de protección radiológica, gestión de desechos y evaluaciones de impacto ambiental.
4. Preparación y respuesta ante emergencias: en caso de un incidente nuclear, la Marina de los EE. UU. tiene planes integrales de preparación y respuesta ante emergencias. Estos planes incluyen la coordinación con agencias locales, estatales y federales para garantizar una respuesta rápida y efectiva a minimizar los impactos ambientales y de salud pública.

La Marina de los EE. UU. está comprometida con la mejora continua en la seguridad y el desempeño ambiental de su programa de propulsión nuclear. Los esfuerzos de investigación y desarrollo en curso se centran en el avance de la tecnología de reactores, la mejora de los sistemas de seguridad y el desarrollo de prácticas de gestión de residuos más eficientes. Las innovaciones como materiales avanzados, diseños de reactores mejorados y sistemas de monitoreo mejorados contribuyen a la evolución continua de los reactores navales.