sábado, 11 de octubre de 2025

FFG: El sistema de propulsión de la Type 26 británica

Fragata Tipo 26: Sistema de propulsión





La fragata Tipo 26 es ampliamente considerada como el mejor buque de guerra antisubmarina disponible actualmente en el mundo, y un componente clave de su capacidad de detección de submarinos es su sistema de propulsión silenciosa.


Cada fragata Tipo 26 cuesta más de mil millones de libras esterlinas, y gran parte de ese costo se debe a la necesidad de sigilo. La reducción de ruido se logra mediante una combinación de soluciones de ingeniería que incluyen la forma del casco, el diseño de las tuberías y el montaje de equipos en todo el buque sobre soportes resistentes a impactos y vibraciones. Pero, sin duda, el mayor desafío es garantizar el funcionamiento silencioso de los motores y la caja de engranajes principal. La industria estadounidense y británica ya está construyendo la fragata Tipo 23, que ha establecido un nuevo estándar en buques de guerra furtivos desde su introducción a principios de la década de 1990. (En comparación, el Tipo 23 costaba 130 millones de libras esterlinas a precios de 1987).

El sistema de propulsión preferido para las fragatas Tipo 23, los destructores Tipo 45, los portaaviones Queen Elizabeth y posiblemente otros buques de guerra de todo el mundo es una combinación de turbinas de gas para alta velocidad y generadores diésel que impulsan motores de propulsión eléctricos, aunque la configuración de dicho sistema puede variar considerablemente.

Para el Tipo 26 se optó por la opción CODELOG (turbina diésel-eléctrica o de gas combinada). En esencia, este sistema solo tiene dos modos de funcionamiento principales. Para alcanzar altas velocidades, la turbina de gas Rolls Royce MT30 transmite la rotación a las hélices directamente a través de cajas de engranajes.


Para crucero y velocidades inferiores, se utilizarán dos motores de propulsión eléctricos, alimentados por hasta cuatro generadores diésel, mientras que la turbina de gas estará apagada.

En comparación, las fragatas Tipo 23 tienen un sistema de propulsión CODELAG (turbina combinada diésel-eléctrica y de gas), y para alcanzar la velocidad máxima requieren el funcionamiento simultáneo de los cuatro generadores diésel, dos motores de propulsión de 3000 kW y dos turbinas de gas Rolls-Royce Marine Spey con una capacidad de 19500 kW cada una.
De hecho, la planta motriz de las fragatas Tipo 23 era complicada y, en mi opinión, no muy cómoda de operar. Cuatro generadores diésel producían 600 V con una frecuencia de 61-65 Hz, que luego iba a rectificadores de tiristores controlados, y de estos a los motores de propulsión de CC. Los rectificadores, naturalmente, introdujeron fuertes interferencias en la red eléctrica. Al parecer, para no preocuparse demasiado por filtrar interferencias y abastecer a consumidores comunes, armas y otros equipos, se contaban con dos convertidores eléctricos: un motor eléctrico de 600 V accionaba un generador de 900 kW, que ya producía una tensión normal de 440 V y 60 Hz.

Al parecer, tras la experiencia no del todo exitosa con el sistema de energía eléctrica unificado de los destructores Tipo 45, la flota decidió no ser tan astuta. Al menos con las fragatas.



Imagen digital de las salas de máquinas de la fragata Tipo 26. Los paralelepípedos a cuadros amarillos son generadores diésel, con una turbina de gas entre ellos. El compartimento central es la sala de la caja de cambios, y a la derecha se encuentran los motores eléctricos de propulsión. Hay cuatro generadores diésel y dos más ocultos en otra parte del barco.

Como los barcos aún están en construcción, no fue posible encontrar fotografías "en vivo".

Turbina Rolls-Royce MT30


La turbina de gas marina MT30 se basa en el motor de aviación Rolls-Royce Trent 800, creado para el avión B-777 y que entró en producción en 1996. Su característica única es su capacidad de operar a plena potencia en un amplio rango de temperaturas del aire de entrada: de -40 a +38 grados. Tiene tal potencia que una unidad puede acelerar un buque con un desplazamiento de 6900 toneladas a al menos 28 nudos.

El MT30 comparte casi el 80% de su diseño con la turbina aerodinámica, lo que la convierte en la turbina marina más potente del mundo y en una historia de éxito de la ingeniería y la fabricación británicas. El ejemplar número 50 salió de la línea de producción este mes (artículo de septiembre de 2019). El motor es utilizado por las armadas de EE. UU., Japón, Corea e Italia, así como por los clientes de las fragatas Tipo 26 (Australia, Malasia, Nueva Zelanda y posiblemente Turquía han expresado interés en los buques a partir de 2019). Las turbinas ya están en servicio en los portaaviones de la clase Queen Elizabeth, y para cuando las fragatas T26 entren en servicio, la Marina Real contará con una amplia experiencia en su operación.

La MT30 tiene una potencia nominal de 40 MW, pero para las fragatas esta se ha limitado a 36 MW, aunque puede incrementarse fácilmente en un 10 % adicional para adaptarse a posibles aumentos futuros del desplazamiento de los buques con la incorporación de nuevos equipos. El núcleo de la turbina, fabricado con componentes probados que utilizan la última tecnología de refrigeración de álabes, cuenta con un revestimiento protector para evitar la corrosión causada por el aire marino cargado de sal.

Nota: núcleo de la turbina, núcleo: según tengo entendido, esta es la parte principal de la turbina, que incluye el compresor, la cámara de combustión y la propia turbina. Si me equivoco, corríjanme.

La MT30 es una robusta turbina de cuatro etapas que cumple con todas las normas de emisiones vigentes. La turbina ha sido sometida a rigurosas pruebas durante 1500 horas de funcionamiento continuo a una temperatura ambiente de 38 °C. La turbina está alojada en un recinto acústico para minimizar las vibraciones y el ruido radiado. El recinto cuenta con protección contra incendios integrada y es fácilmente accesible para el personal de servicio. La operación se realiza de forma remota mediante un sistema digital integrado de control y monitoreo, y el mantenimiento rutinario no requiere más de dos horas-hombre semanales.

La turbina pesa 6500 kg.


Nota: Por supuesto, no se puede instalar una turbina en un barco con esta forma. Debe cubrirse con una carcasa aislante térmica y acústica, tener una entrada de aire y un colector de salida de gases calientes, colocarse sobre una base y añadirle dispositivos auxiliares. De esta forma, se convertirá en un motor de turbina de gas.


El eje de toma de fuerza de salida pasa a través del colector de escape.







Se trata de un motor de turbina de gas en funcionamiento basado en la turbina MT30 del portaaviones HMS Prince of Wales. La turbina incluye el casco y los equipos auxiliares, y pesa unas 30 toneladas una vez ensamblada. Al ser una unidad con su base de soporte, se puede instalar mediante un solo polipasto (riel amarillo arriba).

generadores diésel


Para alcanzar la velocidad de crucero (es decir, la velocidad que proporciona mayor autonomía) y a velocidades inferiores, la fragata utilizará dos motores de propulsión eléctricos, alimentados por cuatro generadores diésel. Cada generador diésel consta de un motor MTU 4000 M53B de 20 cilindros y un alternador (no se especifica el voltaje, pero probablemente no sea de 440 V, sino mucho mayor, lo que se denomina MV (media tensión)) con una capacidad de aproximadamente 3 MW. La marca MTU forma parte de Rolls-Royce Power Systems, y los motores se fabrican en Alemania.

Los generadores diésel también proporcionan la "carga de hotel", que es la energía para todo lo no relacionado con la propulsión eléctrica: los sistemas generales y el armamento del buque. Dado que es probable que en el futuro se incorporen sensores más potentes y armas de energía dirigida, aumentará la necesidad de electricidad, por lo que la planta motriz del buque está sobredimensionada.

El sistema de propulsión diésel-eléctrico es muy eficiente en el consumo de combustible. Los cuatro generadores diésel no necesariamente funcionan simultáneamente y a plena potencia, sino según sea necesario, lo que garantiza su óptimo funcionamiento. Esto reduce el desgaste del motor y ahorra combustible. Además, proporciona redundancia en caso de avería y la posibilidad de mantenimiento en alta mar. Los motores diésel marinos modernos son conocidos por su simplicidad y fiabilidad, y según MTU, la serie 4000 solo necesita una revisión general tras cinco años de funcionamiento. Es probable que un buque pase mucho más tiempo en modo crucero que en modo sprint con una turbina de gas potente y de alto consumo.

Al igual que la turbina de gas, los generadores diésel están completamente protegidos por carcasas acústicas. Los motores diésel están montados sobre sus propios soportes elásticos dentro de la carcasa, y el conjunto también está montado sobre fijaciones especiales que lo aíslan del casco del buque. Así es como se ve:


Es especialmente importante que los generadores diésel sean silenciosos, ya que la mayor parte de la búsqueda submarina se realizará con motores eléctricos a velocidades bajas y medias. Al igual que en el Tipo 23, el par de generadores diésel de popa del Tipo 26 se ubica por encima de la línea de flotación para reducir aún más el ruido transmitido por el agua.

Todos los nuevos buques de guerra de la Marina Real deben construirse desde el principio conforme a las directivas sobre emisiones de la Organización Marítima Internacional (OMI). Los motores diésel estarán equipados con postratamiento de gases de escape de reducción catalítica selectiva (SCR) para neutralizar las emisiones de NO₂. Es probable que se instalen sistemas de refrigeración de gases de escape para reducir las emisiones infrarrojas del buque.


Generador diésel en carcasa acústica y con paneles de acceso retirados en DSEI 2019. Diésel a la izquierda, generador visible a la derecha.

Esta es una imagen colorida de un motor diésel.

Y este es él en la vida real.

El mismo motor, pero con un diseño de 12 cilindros, se instala actualmente en las fragatas T23 durante su modernización, por lo que para cuando las T26 entren en servicio, los mecánicos de los barcos habrán adquirido suficiente experiencia. El sitio web de MTU indica que el motor cuenta con un sistema de combustible common rail, una potencia nominal de 3015 kW a 1800 rpm, un diámetro de cilindro de 170 mm, una carrera de pistón de 210 mm, un consumo de combustible a potencia nominal de 580 l/hora y un peso de 18 toneladas con generador. La letra V en el marcado indica que tiene forma de V.

Motores eléctricos propulsores


Son fabricados por GE Marine y se denominan Motores de Inducción Avanzados.

Nota: El sitio web de GE Marine indica que se trata de motores eléctricos asíncronos de baja velocidad y alta potencia (hasta 40 MW), diseñados específicamente para las necesidades de la Armada. No se explica qué es exactamente "Advance". Entre sus características se incluyen un funcionamiento silencioso, ausencia de vibraciones, capacidad para soportar cargas de impacto y un sistema inversor multicanal integrado Power Conversion VDM25000. Cuentan con un sistema de ventilación cerrado con refrigeración por agua intermedia.

Los motores eléctricos se fabrican con el máximo cuidado y precisión en fábricas especializadas. Hasta hace poco, la fábrica de Rugby (una ciudad de Warwickshire, a 20 km al este de Coventry) corría peligro de cierre, lo que ponía en peligro la seguridad del suministro a todos los clientes del Tipo 26. Una campaña de diputados, sindicatos y otros interesados resultó en que el Ministerio de Defensa realizara un pedido anticipado a la fábrica de los 10 motores restantes para las últimas 5 fragatas. Esto salvó la vital fábrica, que ahora se especializará en la producción de motores eléctricos para la Armada. Se necesitarán otros 9 motores para los 15 barcos australianos y los 48 canadienses, por lo que la fábrica tiene un futuro brillante.


Los motores eléctricos de baja velocidad se instalan directamente en línea con el eje y se desconectan de la caja de engranajes y la turbina de gas mediante embragues síncronos. Este embrague automático se desacopla cuando la velocidad del eje principal, impulsado por el motor eléctrico, supera la velocidad del eje de entrada, impulsado por la turbina. Al desacoplar la caja de engranajes en este momento, se reduce aún más el nivel de ruido emitido por el buque.

La velocidad de rotación de los motores eléctricos está regulada por el convertidor MV3000 fabricado por GE. La tensión de corriente alterna de magnitud y frecuencia constantes procedente de los generadores se rectifica primero y luego se convierte de nuevo en corriente alterna, pero de magnitud y frecuencia variables.

Nota: En principio, una tecnología similar, pero sin las complicaciones navales, se utiliza en rompehielos modernos, gaseros y cruceros, es decir, en buques de propulsión eléctrica. Es cierto que en estos buques se puede utilizar la conversión directa de corriente alterna a corriente alterna, sin un enlace de CC intermedio.

El MV300 se usa ampliamente en la industria, pero se ha mejorado para cumplir con los requisitos de la Armada (no se explican cuáles son). Se basa en tecnologías empleadas por primera vez en los destructores Tipo 45 (la principal causa de los problemas de propulsión del Tipo 45 fueron las turbinas de gas WR21, no el sistema eléctrico).

Nota: Más adelante les contaré cuáles fueron los problemas que dejaron a toda la flota de T-45 atada al muelle.

Reductor


Así luce su modelo, realizado por David Brown Santasalo, fabricante de cajas de cambios.


La etapa principal transmite la rotación del GTE a dos cajas de engranajes independientes, que transmiten la rotación a los ejes de las hélices. El eje de salida de estribor en la etapa principal está ligeramente desplazado, ya que se requería una transmisión adicional allí, lo que garantizaba diferentes direcciones de rotación de las hélices de estribor y babor. Si ambas hélices giraran en la misma dirección, esto causaría un momento de deflexión, desviando constantemente el rumbo del barco. ¡Matices!

Nota: David Brown Santasalo se posiciona como el fabricante líder mundial de sistemas de transmisión de potencia mecánica, con 300 años de experiencia en este campo. Diseña, fabrica y ofrece servicio, y tiene sucursales en 25 países. La empresa se fundó en 2016 tras la fusión de David Brown y Santasalo.

Las cajas de engranajes se han desarrollado específicamente para la fragata Tipo 26. La empresa las denomina "la caja de engranajes marina más silenciosa del mundo" y utiliza décadas de experiencia y tecnología de reducción de ruido de cajas de engranajes submarinas. Todo se fabrica con los más altos estándares para minimizar las imprecisiones que causan vibraciones. Los engranajes más grandes tienen un diámetro aproximado de 3 m, pero los dientes están mecanizados con tolerancias medidas en micras. El resultado es que, incluso a altas velocidades, con la turbina de gas en funcionamiento, la fragata seguirá siendo una embarcación silenciosa, capaz de acercarse rápidamente a un submarino sin ser detectada.

DBS ha construido una instalación especializada para el ensamblaje y prueba de cajas de engranajes marinos en su planta de Huddersfield. El banco de pruebas es capaz de operar las cajas de engranajes a plena capacidad y con carga completa. Cada kit completo se probará antes de su entrega.

Finalmente, las hélices , es decir, el elemento que impulsa directamente el buque.


Hasta el momento, solo está disponible una imagen de computadora de las hélices de la fragata T26.

Así se veían las hélices reales de la fragata T23 HMS Iron Duke cuando estaba en dique seco en 2007
En principio, no hay nada especial que ver aquí. Las fragatas T26 deberían tener algo similar: 5 palas de paso constante, fabricadas en aleación de bronce, optimizadas para RPM relativamente bajas (no se proporcionan detalles como diámetro, peso, paso de la hélice ni RPM). En realidad, debería ser algo así:


Dado que el sistema de propulsión se instalará en el casco en las primeras etapas del proceso de construcción, muchos de los componentes ya están instalados. Han estado en desarrollo durante muchos años, y en 2015 se recibieron pedidos de piezas largas para los tres primeros buques. Parte del equipo ya se ha entregado al astillero y está en proceso de instalación en el buque líder, el HMS Glasgow. El armamento y los sensores instalados en los buques australianos y canadienses serán significativamente diferentes, pero todos compartirán el mismo sistema de propulsión. El proyecto Tipo 26 consolida la posición del Reino Unido como líder mundial, atrayendo nuevas oportunidades de exportación.

Bueno, así es. Nos saltamos las diversas explosiones publicitarias.

En conclusión, aquí hay algunos ejemplos de las discusiones sobre el artículo por parte de los lectores, muchos de los cuales parecen tener una idea de lo que es servir en un buque:

1. Es un placer leerlo, me alegra ver que el T26 como plataforma respaldará la experiencia en guerra antisubmarina (ASW) de la Marina Real. Ahora solo falta un arma ASROC que permita a la fragata perseguir objetivos por sí misma.

Respuesta: Sí, sería bastante vergonzoso que se descubriera un submarino 15 minutos después de que al único helicóptero le quitaran el motor para realizarle mantenimiento.

2. Gracias por el artículo, tengo un par de preguntas.

- Una de las fotos muestra al HMS Westminster con una hélice nueva y palas de sable. ¿Por qué las hélices siguen siendo de paso fijo y no de paso variable?

- Los buques LCS de la Armada de los EE. UU. utilizan hidrojets Rolls Royce. En particular, permiten a los trimaranes alcanzar velocidades superiores a los 40 nudos. ¿Cuánto más ruidosos son los hidrojets a baja velocidad en comparación con una hélice?

- Con la posibilidad de que el radar T45 se actualice en un futuro próximo y de que el Dragonfire se instale como parte del sistema CIWS, ¿no sería una buena oportunidad para sustituir el WR21 por el MT30 al mismo tiempo?

Nota: El Dragonfire es un sistema de armas láser desarrollado en Gran Bretaña.
CISW: arma de combate cuerpo a cuerpo.
WR21: turbinas de gas instaladas en las fragatas T23.


Respuesta: Las fragatas T23 y T26 no requieren una CPP porque los motores modifican su velocidad al variar el voltaje que se les suministra. Los motores también pueden funcionar en reversa, lo que elimina la necesidad de una caja de cambios inversora o CPP.

- No puedo asegurar las características de los chorros de agua, pero no son efectivos en todos los rangos de velocidad.

- La WR21 no se puede retirar, ya que sería una tarea de ingeniería compleja. Los problemas de la T45 se están solucionando con tres nuevos generadores diésel más potentes.

Respuesta: Una hélice de paso constante puede ser extremadamente silenciosa en un rango de RPM determinado, pero una vez superado este límite, se vuelve mucho más ruidosa que una hélice de paso variable. Se puede afirmar que tanto la T23 como la T26 son muy silenciosas al buscar submarinos, pero muy perceptibles a velocidades más altas.

3. En mi experiencia, las hélices de paso constante generan mucha vibración debido a la cavitación que se produce con cualquier cambio significativo de paso. Las bombas hidráulicas necesarias para cambiar el paso de la hélice también tienen una molesta tendencia a "silbar" constantemente, lo que amplifica el ruido. También existe la posibilidad de fugas en el sello del cubo, lo que requerirá el varado del barco, lo que implica tiempo y dinero (esto se agrava ahora por la exigencia de utilizar aceites ecológicos y costosos en todos los barcos).

Además, las bombas de aceite de paso (tanto mecánicas como eléctricas) pueden ser bastante ruidosas. Al encender cualquier bomba hidráulica de respaldo, se produce un pico inicial de ruido debido a la acumulación de aire, bombas frías, etc. Con el tiempo, esto empeora. Todo el sistema necesita refrigeración y ocupa mucho espacio; además, todo esto suele estar por debajo de la línea de flotación.

Sí, los sistemas diésel-eléctricos son un avance. Los motores con convertidor de frecuencia son muy eficientes y se pueden desmontar fácilmente para su mantenimiento. La desventaja es la posibilidad de interferencias de pulsos y el hecho de que (los convertidores) no consumen potencia reactiva. Algunos generadores ahora requieren protección contra baja potencia reactiva, así como protección contra potencia inversa. (Los expertos en electricidad lo entenderán).

Los variadores de frecuencia llevan más de 20 años en el mercado y Rolls Royce es líder mundial en este campo.
De hecho, estuve en los Leander y eran sorprendentemente silenciosos para aquella época.

Respuesta: La interferencia de frecuencia armónica es un problema que se puede solucionar con un diseño cuidadoso, pero incluso así hay matices. El LPD tenía problemas de armónicos de frecuencia muy extremos. Esto limitaba la potencia disponible para los sistemas de armas que requieren una frecuencia estable durante un tiempo hasta que se implementó una solución de diseño.

Nota: LPD, aparentemente, se refiere a un muelle de transporte de desembarco. Se encuentran en las armadas británica, estadounidense y de otras partes del mundo. No está claro a qué buques se refiere.

4. Gracias por un artículo bien documentado y tengo varios comentarios:

«Una sola turbina [MT30] puede proporcionar a un buque de 6900 toneladas al menos 28 nudos», aunque BAE no afirma que 6900 toneladas sea un desplazamiento «ligero», y los australianos afirman que el Hunter tendrá 8000 toneladas a plena carga y 8800 toneladas al final de su vida útil, lo que representa el aumento típico del 10 % en el desplazamiento a lo largo de la vida útil del buque. El único requisito de BAE es una velocidad superior a 26 nudos, pero eso depende del desplazamiento real en ese momento.

No se mencionó la potencia de los motores eléctricos del T26. Las fragatas alemanas F125 de 7200 toneladas utilizan dos motores eléctricos Siemens de 4,7 MW cada uno, mientras que los buques FREMM italianos de 6700 toneladas utilizan dos motores eléctricos de 2,1 MW cada uno. Esto proporciona velocidades de unos 20 y 16 nudos respectivamente, lo que parece una regla general: por cada 4 nudos de aumento de velocidad, se necesita el doble de potencia. Hasta que no se especifique la potencia de los motores eléctricos, no se comprenderá la velocidad que alcanzará el T26 en modo eléctrico.

Nota:
1. El desplazamiento en vacío es el peso de un buque completamente vacío, con todo el equipo y los mecanismos, pero sin combustible, agua, municiones ni tripulación; sin nada en absoluto. De hecho, Wikipedia, al hablar de la fragata líder, el T26, el HMS Glasgow, da una cifra de 6900 toneladas, sin especificar cuál es, y 8000 toneladas como desplazamiento completo.

2. "Hunter": Fragatas australianas construidas sobre la base del proyecto T26.

3. FLD y EOL: desplazamiento en diferentes condiciones. FLD = Desplazamiento a plena carga, es decir, lo que podríamos llamar "desplazamiento completo". El buque con todo lo necesario para realizar sus tareas, incluso con el equipaje de la tripulación. EOL: No estoy seguro, pero probablemente significa Fin de Vida Útil, a juzgar por el contexto.

4. En cuanto a la potencia de los motores eléctricos de propulsión, podría calcularse aproximadamente utilizando la misma fórmula empírica si se especificara la velocidad de crucero. Pero esto no se encuentra en ninguna parte.


Y así sucesivamente. Hay varias páginas de debates; son interesantes en sí mismas, pero te cansarás de traducirlo todo.

Gracias por su atención.

No hay comentarios:

Publicar un comentario